一维前缀和
算法用途:快速求出数组中某一连续区间的和
一维前缀和算法模板
1、预处理出一个 dp 数组
要求原数组存储在 n + 1 的空间大小中,其中后 n 个空间存数据。
dp数组,数组开 n + 1个空间,dp[i] 表示 [ 1, i ] 区间内所有元素的和。
处理方法: dp[ i ] = dp[ i - 1 ] + arr[ i ]
2、使用前缀和数组
区间 l 到 r 的和: sum = dp[ r ] - dp[ l - 1 ]
复杂度分析
处理前缀和数组,需要 O(N) 的空间复杂度和空间复杂度,求一次区间 l 到 r 的和,需要 O(1) 的时间复杂度,如果需要求 q 次和,则时间复杂度就是 O(q) + O(N)
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int e[N], dp[N];
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> e[i];
for(int i = 1; i <= n; i++) dp[i] = dp[i - 1] + e[i];
while(m--)
{
int l, r;
cin >> l >> r;
cout << dp[r] - dp[l - 1] << endl;
}
return 0;
}
二维前缀和
算法用途:快速求出某个子矩阵的和
二维前缀和算法模板
1、预处理出一个 前缀和矩阵(二维数组 dp)
假设原矩阵有 m 行,n列,那么这个前缀和矩阵的二维数组 dp 要开 m+1 行, n+1 列的空间,第一行,第一列的数据都为 0, dp[ i ][ j ] 表示 [ 1, i ] 行,[ 1, j ] 列包含的这个矩阵的数据和
处理方法:dp[ i ][ j ] = dp[ i - 1 ][ j ] + dp[ i ][ j - 1 ] - dp[ i - 1 ][ j - 1 ] + arr[ i ][ j ]
2、使用前缀和矩阵
[ x1, y1 ] ~ [ x2, y2 ] = dp[ x2, y2] - dp[ x1- 1 ][ y2 ] - dp[ x2 ][ y1 - 1 ] + dp[ x1 ][ y1 ]
#include <iostream>
using namespace std;
const int N = 1010;
int e[N][N], dp[N][N];
int n, m, q;
int main()
{
cin >> n >> m >> q;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) cin >> e[i][j];
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + e[i][j];
while(q--)
{
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
cout << dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1] << endl;
}
return 0;
}
二维数组前缀和的建立和使用图解
注:vector开具体大小空间的定义方式
一维 vector :vector< int > dp ( m + 1 ) 开 m + 1 个连续的空间
二维 vector :vector< vector< int > > dp(n + 1, vector<int> (m + 1)) (n+1行,m + 1列的二维数组定义方式)