幻想过山车

该博客探讨了一道图论问题,题意是在允许重复行走的条件下找到到达目标点的时间P。作者提出以1的最短出边构建环,并通过SPFA算法更新最短路径数组f[i][j],确保路径余数满足条件。文章总结提到,最短环的使用基于其能够提供更小的变量,从而简化问题。
摘要由CSDN通过智能技术生成

题目:

 

样例图片:

思路 :

题意是路可以重复走,使得到达n点的时间恰好是p

根据这个性质,我们要想办法凑出这个时间P来。根据路可以重复走的性质,

我们可以找一个环来卡时间,什么样的环最佳呢?

我们先给出答案,以1的最短出边 * 2 构成一个环 在本样例中即为 1 <——> 2 <——> 1

对应代码:

	int u,v,w,i;
	re(n); re(m);
	for(i=1;i<=m;i++)
	{
		re(u); re(v); re(w);
		add(u,v,w);
		add(v,u,w);//无向边建双向 
	}
	d=inf;
	for(i=Head[1];i;i=Next[i]) d=min(d,cost[i]);//找到起点1的出边中最短的 
	re(Q);
	if(d==inf)//如果起点1压根就没有出边,那肯定都不
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值