暑假模板和例题

[Violet]蒲公英

题目背景

亲爱的哥哥:

你在那个城市里面过得好吗?

我在家里面最近很开心呢。昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被它杀掉了。我觉得把那么可怕的怪物召唤出来的那个坏蛋也很坏呢。不过奶奶说他是很难受的时候才做出这样的事的……

最近村子里长出了一大片一大片的蒲公英。一刮风,这些蒲公英就能飘到好远的地方了呢。我觉得要是它们能飘到那个城市里面,让哥哥看看就好了呢!

哥哥你要快点回来哦!

爱你的妹妹 Violet

Azure 读完这封信之后微笑了一下。

“蒲公英吗……”

题目描述

在乡下的小路旁种着许多蒲公英,而我们的问题正是与这些蒲公英有关。

为了简化起见,我们把所有的蒲公英看成一个长度为 n n n 的序列 { a 1 , a 2 . . a n } \{a_1,a_2..a_n\} {a1,a2..an},其中 a i a_i ai 为一个正整数,表示第 i i i 棵蒲公英的种类编号。

而每次询问一个区间 [ l , r ] [l, r] [l,r],你需要回答区间里出现次数最多的是哪种蒲公英,如果有若干种蒲公英出现次数相同,则输出种类编号最小的那个。

注意,你的算法必须是在线的

输入格式

第一行有两个整数,分别表示蒲公英的数量 n n n 和询问次数 m m m

第二行有 n n n 个整数,第 i i i 个整数表示第 i i i 棵蒲公英的种类 a i a_i ai

接下来 m m m 行,每行两个整数 l 0 , r 0 l_0, r_0 l0,r0,表示一次询问。输入是加密的,解密方法如下:

令上次询问的结果为 x x x(如果这是第一次询问,则 x = 0 x = 0 x=0),设 l = ( ( l 0 + x − 1 )   m o d   n ) + 1 , r = ( ( r 0 + x − 1 )   m o d   n ) + 1 l=((l_0+x-1)\bmod n) + 1,r=((r_0+x-1) \bmod n) + 1 l=((l0+x1)modn)+1,r=((r0+x1)modn)+1。如果 l > r l > r l>r,则交换 l , r l, r l,r
最终的询问区间为计算后的 [ l , r ] [l, r] [l,r]

输出格式

对于每次询问,输出一行一个整数表示答案。

样例 #1

样例输入 #1

6 3 
1 2 3 2 1 2 
1 5 
3 6 
1 5

样例输出 #1

1 
2 
1

提示

数据规模与约定
  • 对于 20 % 20\% 20% 的数据,保证 n , m ≤ 3000 n,m \le 3000 n,m3000
  • 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 40000 1\le n \le 40000 1n40000 1 ≤ m ≤ 50000 1\le m \le 50000 1m50000 1 ≤ a i ≤ 1 0 9 1\le a_i \le 10^9 1ai109 1 ≤ l 0 , r 0 ≤ n 1 \leq l_0, r_0 \leq n 1l0,r0n

answer

#include<bits/stdc++.h>
using namespace std;
const int N = 50070;
int n, t, m, cnt,preans = 0,M;
int a[N], b[N], pos[N], L[N], R[N], p[N], f[5070][5070];
vector<int>v[N];
void deal(int x) {
    int now = 0;
    for (int i = L[x]; i <= n; ++i) {//p存数字出现次数
        ++p[a[i]];
        if (p[a[i]] > p[a[now]] || (p[a[i]] == p[a[now]] && a[i] < a[now]))
            now = i;
        f[x][pos[i]] = a[now];//f[a][b]表示从a到b块中的众数
    }
    memset(p, 0, sizeof p);
}
int query(int l, int r) {
    int ans = 0, sum = 0, tot = 0, x, z, y;
    if (pos[l] == pos[r])
        for (int i = l; i <= r; ++i)
            p[++tot] = a[i];
    else {
        for (int i = l; i <= R[pos[l]]; ++i)
            p[++tot] = a[i]; 
        p[++tot] = f[pos[l] + 1][pos[r] - 1]; 
        for (int i = L[pos[r]]; i <= r; ++i)
            p[++tot] = a[i]; 
    }
    for (int i = 1; i <= tot; ++i) {
        if (!p[i])
            continue;
        x = p[i];
        y = lower_bound(v[x].begin(), v[x].end(), l) - v[x].begin();
        z = upper_bound(v[x].begin(), v[x].end(), r) - v[x].begin();
        if (z - y + 1 > sum)
            ans = x, sum = z - y + 1;
        else if (z - y + 1 == sum && x < ans)
            ans = x;
    }
    return b[ans];
}
int main() {
    scanf("%d%d", &n,&M);
    t = 150, cnt = n / t + !!(n % t); //!!:如果是0就是0,如果 > 0就是1,t是块长,卡常离谱
    for (int i = 1; i <= n; ++i) {
        scanf("%d", a + i);
        b[i] = a[i];
    }
    sort(b + 1, b + n + 1);//排序
    m = unique(b + 1, b + n + 1) - b - 1;
    for (int i = 1; i <= n; ++i)//离散化
        a[i] = lower_bound(b + 1, b + m + 1, a[i]) - b;
    for (int i = 1; i <= n; ++i)
        v[a[i]].push_back(i);//存每个数的下标
    for (int i = 1; i <= cnt; ++i)
        L[i] = (i - 1) * t + 1, R[i] = i * t;
    if (R[cnt] > n)
        R[cnt] = n;
    for (int i = 1; i <= cnt; ++i)
        for (int j = L[i]; j <= R[i]; ++j)
            pos[j] = i;
    for (int i = 1; i <= cnt; ++i)
        deal(i);
    for (int i = 1, l, r; i <= M; ++i) {
        scanf("%d%d", &l, &r);
       l = (l + preans - 1) % n + 1,r = (r + preans - 1) % n + 1;
       if(l > r)swap(l,r);
        printf("%d\n", query(l, r));
        preans = query(l,r);
    }
}

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 100005;
int n,m,t;
int a[N], pos[N], L[N], R[N], sum[N], add[N];
void modify(int l, int r, int d) {
    int p = pos[l], q = pos[r];
    if (p == q) {
        for (int i = l; i <= r; ++i)
            a[i] += d;
        sum[p] += d * (r - l + 1);
        return;
    }
    for (int i = p + 1; i <= q - 1; ++i)
        add[i] += d;
    for (int i = l; i <= R[p]; ++i)
        a[i] += d;
    sum[p] += d * (R[p] - l + 1);
    for (int i = L[q]; i <= r; ++i)
        a[i] += d;
    sum[q] += d * (r - L[q] + 1);
}
LL ask(int l, int r) {
    int p = pos[l], q = pos[r];
    LL ans = 0;
    if (p == q) {
        for (int i = l; i <= r; ++i)
            ans = (ans + a[i]);
        ans = (ans + 1LL * add[p] * (r - l + 1));
        return ans;
    }
    for (int i = p + 1; i <= q - 1; ++i)
        ans = (ans + sum[i] + 1LL * add[i] * (R[i] - L[i] + 1));
    for (int i = l; i <= R[p]; ++i)
        ans = (ans + a[i]);
    ans = (ans + 1LL * add[p] * (R[p] - l + 1));
    for (int i = L[q]; i <= r; ++i)
        ans = (ans + a[i]);
    ans = (ans + 1LL * add[q] * (r - L[q] + 1));
    return ans;
}
int main() {
    scanf("%d%d",&n,&m);
    for (int i = 1; i <= n; ++i)
        scanf("%d", a + i);
    t = sqrt(n);
    for (int i = 1; i <= t; ++i)
        L[i] = (i - 1) * t + 1, R[i] = i * t;
    if (R[t] < n)
        t++, L[t] = R[t - 1] + 1, R[t] = n;
    for (int i = 1; i <= t; ++i)
        for (int j = L[i]; j <= R[i]; ++j)
            pos[j] = i, sum[i] += a[j];
    for (int i = 1, opt, l, r, c; i <= m; ++i) {
        scanf("%d", &opt);
        if (opt==1)
        {   
            scanf("%d%d%d",&l,&r,&c);
             modify(l, r, c);
        }
           
        else
        {
            scanf("%d%d",&l,&r);
            printf("%lld\n", ask(l, r));
        }
            
    }
}

树的直径

#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;

int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const int maxn=100010;
int n,m;
struct node{int v,dis,nxt;}E[maxn<<2];
int head[maxn],tot;
int dp[maxn],mxlen;

void add(int u,int v,int dis)
{
    E[++tot].nxt=head[u];
    E[tot].v=v; E[tot].dis=dis;
    head[u]=tot;
}

void DP(int u,int pa)
{
	dp[u]=0;
	for(int i=head[u];i;i=E[i].nxt)
	{
		int v=E[i].v;
		if(v==pa) continue;
		DP(v,u);
		mxlen=max(mxlen,dp[u]+dp[v]+E[i].dis);
		dp[u]=max(dp[u],dp[v]+E[i].dis);
	} 
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
    	memset(head,0,sizeof(head)); 
		tot=mxlen=0;
		while(m--)  
        {  
            int u=read(),v=read(),dis=read();
            char ss[5]; scanf("%s",&ss);
            add(u,v,dis);  add(v,u,dis);  
        }  
		DP(1,0);
    	printf("%d",mxlen);
	}
    return 0;
}

树链剖分 + 线段树

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 100005;
int n,m,len,ind;
int head[MAXN],f[MAXN],top[MAXN],id[MAXN],size[MAXN],son[MAXN],dep[MAXN];
ll w[MAXN],a[MAXN];

struct Edge{
    int to,next;
} e[MAXN * 2];

struct Tree{
    int l,r;
    ll sum,f;
} tree[MAXN * 4];

void add(int u,int v){
    e[++len].to = v;
    e[len].next = head[u];
    head[u] = len;
}

void dfs1(int u,int fa,int d){
    f[u] = fa;
    size[u] = 1;
    dep[u] = d;
    for(int i = head[u];i != -1;i = e[i].next){
        int v = e[i].to;
        if(v == fa)
            continue;
        dfs1(v,u,d + 1);
        size[u] += size[v];
        if(size[v] > size[son[u]])
            son[u] = v;
    }
}

void dfs2(int u,int t){
    top[u] = t;
    id[u] = ++ind;
    a[ind] = w[u];
    if(!son[u])
        return;
    dfs2(son[u],t);
    for(int i = head[u];i != -1;i = e[i].next){
        int v = e[i].to;
        if(v != f[u] && v != son[u])
            dfs2(v,v);
    }
}

void update(int k){
    tree[k].sum = tree[k * 2].sum + tree[k * 2 + 1].sum;
}

void down(int k){
    tree[k * 2].sum += tree[k].f * (tree[k * 2].r - tree[k * 2].l + 1);
    tree[k * 2 + 1].sum += tree[k].f * (tree[k * 2 + 1].r - tree[k * 2 + 1].l + 1);
    tree[k * 2].f += tree[k].f;
    tree[k * 2 + 1].f += tree[k].f;
    tree[k].f = 0;
}

void build(int k,int l,int r){
    tree[k].l = l;
    tree[k].r = r;
    if(l == r){
        tree[k].sum = a[l];
        return;
    }
    int mid = (l + r) / 2;
    build(k * 2,l,mid);
    build(k * 2 + 1,mid + 1,r);
    tree[k].sum = tree[k * 2].sum + tree[k * 2 + 1].sum;
}

void addInterval(int k,int l,int r,ll val){
    if(tree[k].l >= l && tree[k].r <= r){
        tree[k].f += val;
        tree[k].sum += val * (tree[k].r - tree[k].l + 1);
        return;
    }
    if(tree[k].f)
        down(k);
    int mid = (tree[k].l + tree[k].r) / 2;
    if(l <= mid)
        addInterval(k * 2,l,r,val);
    if(r > mid)
        addInterval(k * 2 + 1,l,r,val);
    tree[k].sum = tree[k * 2].sum + tree[k * 2 + 1].sum;
}

ll sumInterval(int k,int l,int r){
    ll cnt = 0;
    if(tree[k].l >= l && tree[k].r <= r)
        return tree[k].sum;
    if(tree[k].f)
        down(k);
    int mid = (tree[k].l + tree[k].r) / 2;
    if(l <= mid)
        cnt += sumInterval(k * 2,l,r);
    if(r > mid)
        cnt += sumInterval(k * 2 + 1,l,r);
    return cnt;
}

void addPoint(int k,int x,ll val){
    if(tree[k].l == tree[k].r){
        tree[k].sum += val;
        return;
    }
    if(tree[k].f)
        down(k);
    int mid = (tree[k].l + tree[k].r) / 2;
    if(x <= mid)
        addPoint(k * 2,x,val);
    else
        addPoint(k * 2 + 1,x,val);
    tree[k].sum = tree[k * 2].sum + tree[k * 2 + 1].sum;
}

ll sumTree(int x,int y){
    int fx = top[x],fy = top[y];
    ll ans = 0;
    while(fx != fy){
        if(dep[fx] >= dep[fy]){
            ans += sumInterval(1,id[fx],id[x]);
            x = f[fx];
            fx = top[x];
        }else{
            ans += sumInterval(1,id[fy],id[y]);
            y = f[fy];
            fy = top[y];
        }
    }
    if(id[x] <= id[y])
        ans += sumInterval(1,id[x],id[y]);
    else
        ans += sumInterval(1,id[y],id[x]);
    return ans;
}

int main(){
    memset(head,-1,sizeof(head));
    scanf("%d%d",&n,&m);
    for(int i = 1;i <= n;i++)
        scanf("%lld",&w[i]);
    for(int i = 1;i < n;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        add(x,y);
        add(y,x);
    }
    dfs1(1,0,1);
    dfs2(1,1);
    build(1,1,n);
    while(m--){
        int op,x;
        ll y;
        scanf("%d%d",&op,&x);
        if(op == 1){
            scanf("%lld",&y);
            addPoint(1,id[x],y);
        }else if(op == 2){
            scanf("%lld",&y);
            addInterval(1,id[x],id[x] + size[x] - 1,y);
        }else if(op == 3)
            printf("%lld\n",sumTree(1,x)); 
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值