machine learning
文章平均质量分 91
破浪会有时
乘风破浪会有时,直挂云帆济沧海
展开
-
机器学习管道实践 ML Pipeline:4. Flask部署
我们将通过一系列文章学习机器学习管道(Machine Learning Pipeline)的一个实例。这一章节我们主要描述如何通过Flask进行简单的部署,以及如何通过使用`python anywhere`将我们上一章节的flask应用运行在云端。原创 2022-03-22 05:15:00 · 509 阅读 · 0 评论 -
机器学习管道实践 ML Pipeline:3. sklearn.pipeline的使用以及自动调参
我们将通过一系列文章学习机器学习管道(Machine Learning Pipeline)的一个实例。此章节中,我们将介绍`sklearn.pipeline`的使用。并且,除了通过`pipeline`将整个机器学习的流程串起来之外,我们可以通过`GridSearchCV`类实现自动调参。即,我们可以手动给这个机器学习流程中的参数一个范围,然后让系统遍历所有可能性,最后选出性能最好的那个参数。原创 2022-03-21 04:45:00 · 1187 阅读 · 1 评论 -
机器学习管道实践 ML Pipeline:2. 一个普通的机器训练模型流程
我们将通过一系列文章学习机器学习管道(Machine Learning Pipeline)的一个实例。此章节中,我们将按照一般的流程进行模型训练。原创 2022-03-20 04:15:00 · 1436 阅读 · 0 评论 -
机器学习管道实践 ML Pipeline:1. 训练数据准备
我们将通过一系列文章学习机器学习管道(Machine Learning Pipeline)的一个实例。这里我们将先对训练数据做一些梳理,以满足机器学习模型的输入要求。原创 2022-03-19 12:00:00 · 1351 阅读 · 0 评论 -
MLOps极致细节:9. MLFlow 超参数调参案例综述(附代码)
在这个博客中,我们将详细提供一系列案例,基于mlflow和keras的深度学习框架对`winequality-white`数据进行quanlity预测的端到端流程,以及通过随机选择和Hyperopt优化进行调整超参数。相关代码参见:https://gitee.com/yichaoyyds/mlflow-ex-hyperparametertunning。原创 2022-03-14 15:00:00 · 659 阅读 · 3 评论 -
MLOps极致细节:8. MLFlow REST API 实例(附代码)
在这个博客中,我们将介绍MLFlow REST API的代码,以及一些函数的使用,包括新建mlflow run,新建experiment,从experiment id/name中获得相关experiment信息,设置Tag/param/metric信息,设置log batch信息等等。MLFlow REST API的详细介绍参见博客MLOps极致细节:7. MLFlow REST API 功能介绍及应用。原创 2022-03-13 11:00:00 · 720 阅读 · 0 评论 -
MLOps极致细节:6. MLFlow docker案例,Windows平台运行(附代码)
在这个博客中,我们将基于mlflow的官方案例来解读如何使用docker环境运行mlflow代码。我们使用的平台是Win10,但在运行过程中,我们发现在Win10平台上操作会出现bug,由于目前手头上正巧没有Linux主机,所以只能继续使用Win10平台,并在本文中详细解释bug的原因(`docker: Error response from daemon: invalid mode`)以及如何更正。原创 2022-03-12 20:00:00 · 894 阅读 · 0 评论 -
MLOps极致细节:5. MLFlow Projects 案例代码解读
MLFlow Projects允许我们将代码及其依赖项打包为一个可以在其他平台上以可复制(reproducible)和可重用(reusable)的方式运行的项目。每个项目都包括自己的代码和一个MLproject文件,该文件定义了它的依赖项(例如Python环境),以及可以在项目中运行哪些命令以及它们采用的参数。上一章节中,我们对MLflow Projects的概念以及结果进行了描述(参见博客:MLOps极致细节:4. MLFlow Projects 案例介绍)。这里我们将对[代码]进行详细解读。原创 2022-03-09 18:00:00 · 601 阅读 · 10 评论 -
MLOps极致细节:4. MLFlow Projects 案例介绍(Gitee代码链接)
MLFlow Projects允许我们将代码及其依赖项打包为一个可以在其他平台上以可复制(reproducible)和可重用(reusable)的方式运行的项目。每个项目都包括自己的代码和一个MLproject文件,该文件定义了它的依赖项(例如Python环境),以及可以在项目中运行哪些命令以及它们采用的参数。在这个案例中,我们基于MLFlow的官方GitHub文档,具体说明MLflow Projects如何被使用,以及结果。原创 2022-03-06 16:05:53 · 1734 阅读 · 3 评论 -
MLOps极致细节:3. MLFlow Tracking 案例代码解读
MLflow Tracking是一个API以及包含UI界面,能够允许我们记录代码中的log matrics和artifacts文件,查看运行历史记录,并且进行一些结果的数据可视化。上一章节中,我们对MLflow Tracking的概念进行了描述,参见博客:MLOps极致细节:2. MLFlow Tracking 介绍。这里我们将对代码进行详细解读。原创 2022-03-08 18:00:00 · 675 阅读 · 0 评论 -
MLOps极致细节:2. MLFlow Tracking 案例介绍(Gitee代码链接)
MLflow Tracking是一个API以及包含UI界面,能够允许我们记录代码中的log matrics和artifacts文件,查看运行历史记录,并且进行一些结果的数据可视化。在这个案例中,我们会具体说明MLflow Tracking如何被使用,以及结果。原创 2022-03-06 14:15:07 · 799 阅读 · 0 评论 -
MLOps极致细节:1. MLFlow介绍
这个博客,我们将非常简单地介绍一个比较实用的MLOps开源工具:MLFlow。在接下来的一系列博客中,我们将逐渐列举一些实例,和大家一起一步步通过MLFlow来学习MLOps是如何让机器学习/深度学习流程化的。原创 2022-03-07 18:00:00 · 1950 阅读 · 0 评论 -
MLOps极致细节:0. 背景介绍
此博客主要介绍什么是MLOps,为什么用MLOps,以及MLOps与DevOps,破布,敏捷等产品开发流程的区别。原创 2022-03-06 11:50:45 · 1214 阅读 · 0 评论