deep learning
文章平均质量分 95
破浪会有时
乘风破浪会有时,直挂云帆济沧海
展开
-
MobileNetV2 pyTorch Lightning LEGO Minifigures 图像分类案例
此案例中,我们将通过 pyTorch Lightning 对 MobileNetV2 预训练模型进行迁移学习,对象是 LEGO Minifigures 数据集。提供源代码。原创 2022-05-08 17:20:57 · 1224 阅读 · 0 评论 -
基于Pytorch TorchHub和RESNET的图像分类案例
此章节中通过一个具体案例详细介绍如何使用TorchHub,基于已经训练好的ResNet模型进行迁移学习分类任务。我们将学习这些模型背后的核心思想,并根据我们选择的任务对其进行微调。原创 2022-03-17 10:00:00 · 623 阅读 · 0 评论 -
MLOps极致细节:12. MLFlow 超参数调参案例: hyperopt优化调参(附代码)
本章节将详细解释如何通过hyperopt优化搜索,基于MLFlow以及keras的端到端深度学习流程。相关主要代码参见`search_hyperopt.py`文件。关于整个系列案例如何运行,请参见博客:MLOps极致细节:9. MLFlow 超参数调参案例综述(附代码)。代码参见 https://gitee.com/yichaoyyds/mlflow-ex-hyperparametertunning。原创 2022-03-16 15:00:00 · 683 阅读 · 0 评论 -
MLOps极致细节:11. MLFlow 超参数调参案例: 随机搜索调参(附代码)
本章节将详细解释如何通过随机搜索,基于MLFlow以及keras的端到端深度学习流程。相关主要代码参见`search_random.py`文件。关于整个系列案例如何运行,请参见博客:[MLOps极致细节:9. MLFlow 超参数调参案例综述(附代码)](https://blog.csdn.net/zyctimes/article/details/123422640)。代码参见[此Gitee链接](https://gitee.com/yichaoyyds/mlflow-ex-hyperparameter)原创 2022-03-15 17:00:00 · 928 阅读 · 0 评论 -
MLOps极致细节:10. MLFlow 超参数调参案例: 基于keras的端到端深度学习流程(附代码)
本章节将详细解释如何基于MLFlow以及keras的端到端深度学习流程。相关主要代码参见`train.py`文件。关于整个系列案例如何运行,请参见博客:[MLOps极致细节:9. MLFlow 超参数调参案例综述(附代码)](https://blog.csdn.net/zyctimes/article/details/123422640)。相关代码参见[此Gitee链接](https://gitee.com/yichaoyyds/mlflow-ex-hyperparametertunning)。原创 2022-03-15 14:00:00 · 746 阅读 · 0 评论 -
MLOps极致细节:9. MLFlow 超参数调参案例综述(附代码)
在这个博客中,我们将详细提供一系列案例,基于mlflow和keras的深度学习框架对`winequality-white`数据进行quanlity预测的端到端流程,以及通过随机选择和Hyperopt优化进行调整超参数。相关代码参见:https://gitee.com/yichaoyyds/mlflow-ex-hyperparametertunning。原创 2022-03-14 15:00:00 · 659 阅读 · 3 评论 -
MLOps极致细节:5. MLFlow Projects 案例代码解读
MLFlow Projects允许我们将代码及其依赖项打包为一个可以在其他平台上以可复制(reproducible)和可重用(reusable)的方式运行的项目。每个项目都包括自己的代码和一个MLproject文件,该文件定义了它的依赖项(例如Python环境),以及可以在项目中运行哪些命令以及它们采用的参数。上一章节中,我们对MLflow Projects的概念以及结果进行了描述(参见博客:MLOps极致细节:4. MLFlow Projects 案例介绍)。这里我们将对[代码]进行详细解读。原创 2022-03-09 18:00:00 · 601 阅读 · 10 评论 -
MLOps极致细节:4. MLFlow Projects 案例介绍(Gitee代码链接)
MLFlow Projects允许我们将代码及其依赖项打包为一个可以在其他平台上以可复制(reproducible)和可重用(reusable)的方式运行的项目。每个项目都包括自己的代码和一个MLproject文件,该文件定义了它的依赖项(例如Python环境),以及可以在项目中运行哪些命令以及它们采用的参数。在这个案例中,我们基于MLFlow的官方GitHub文档,具体说明MLflow Projects如何被使用,以及结果。原创 2022-03-06 16:05:53 · 1734 阅读 · 3 评论 -
MLOps极致细节:3. MLFlow Tracking 案例代码解读
MLflow Tracking是一个API以及包含UI界面,能够允许我们记录代码中的log matrics和artifacts文件,查看运行历史记录,并且进行一些结果的数据可视化。上一章节中,我们对MLflow Tracking的概念进行了描述,参见博客:MLOps极致细节:2. MLFlow Tracking 介绍。这里我们将对代码进行详细解读。原创 2022-03-08 18:00:00 · 675 阅读 · 0 评论 -
MLOps极致细节:2. MLFlow Tracking 案例介绍(Gitee代码链接)
MLflow Tracking是一个API以及包含UI界面,能够允许我们记录代码中的log matrics和artifacts文件,查看运行历史记录,并且进行一些结果的数据可视化。在这个案例中,我们会具体说明MLflow Tracking如何被使用,以及结果。原创 2022-03-06 14:15:07 · 799 阅读 · 0 评论 -
MLOps极致细节:1. MLFlow介绍
这个博客,我们将非常简单地介绍一个比较实用的MLOps开源工具:MLFlow。在接下来的一系列博客中,我们将逐渐列举一些实例,和大家一起一步步通过MLFlow来学习MLOps是如何让机器学习/深度学习流程化的。原创 2022-03-07 18:00:00 · 1950 阅读 · 0 评论 -
MLOps极致细节:0. 背景介绍
此博客主要介绍什么是MLOps,为什么用MLOps,以及MLOps与DevOps,破布,敏捷等产品开发流程的区别。原创 2022-03-06 11:50:45 · 1214 阅读 · 0 评论