背景
领略千年皮影戏魅力,传承正在消失的艺术, 皮影戏的神奇,在于小小皮影在指尖上飞舞,时而刀光剑影、时而策马扬鞭、时而缠绵悱恻,千军万马是他,单打独斗也是他。皮影戏可谓是闻名中外,它是把光影声色做到极致的一门古老艺术。 先辈门通过手艺演绎着皮影戏,同样我们也可以通过AI方式来实现。为了实现皮影戏,可以通过PaddleHub提供的人体骨骼关键点检测库完成将人体姿态检测,同时映射到皮影身上,让皮影动起来。
皮影素材
项目实现过程中使用的Python版本为3.7.0,其他依赖库的版本分别为cv2 4.5.1.48、matplotlib 2.2.2、numpy 1.19.3、tensorflow 2.4.1。
本项目具体流程如下:
一、安装依赖库以及模型
1、安装PaddlePaddle
PaddlePaddle官网:
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/2.0/install/pip/windows-pip.html
python -m pip install paddlepaddle==2.0.0 -i https://mirror.baidu.com/pypi/simple
测试安装成功:
2、安装paddlehub:
paddlehub官网:
https://paddlehub.readthedocs.io/zh_CN/develop/index.html
pip install paddlehub -i https://pypi.doubanio.com/simple
测试安装成功:
3、导入人体骨骼关键节点检测模型
hub install human_pose_estimation_resnet50_mpii==1.1.1
二、检测是否安装成功
1、检测图片骨骼节点
import os
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt
from matplotlib.image import imread
import numpy as np
def show_img(img_path, size=8):
'''
文件读取图片显示
'''
im = imread(img_path)
plt.figure(figsize=(size, size))
plt.axis("off")
plt.imshow(im)
def img_show_bgr(image, size=8):
'''
cv读取的图片显示
'''
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(size, size))
plt.imshow(image)
plt.axis("off")
plt.show()
pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
result = pose_estimation.keypoint_detection(paths=['test4.jpg'], visualization=True, output_dir="work/output_pose/")
print(result)
2、拼接皮影素材
import os
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt
from matplotlib.image import imread
import numpy as np
def show_img(img_path, size=8):
'''
文件读取图片显示
'''
im = imread(img_path)
plt.figure(figsize=(size,size))
plt.axis("off")
plt.imshow(im)
def img_show_bgr(image,size=8):
'''
cv读取的图片显示
'''
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
plt.figure(figsize=(size,size))
plt.imshow(image)
plt.axis("off")
plt.show()
show_img('work/imgs/body01.jpg')
pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
result = pose_estimation.keypoint_detection(paths=['test4.jpg'], visualization=True, output_dir="work/output_pose/")
print(result)
def get_true_angel(value):
'''
转转得到角度值
'''
return value/np.pi*180
def get_angle(x1, y1, x2, y2):
'''
计算旋转角度
'''
dx = abs(x1- x2)
dy = abs(y1- y2)
result_angele = 0
if x1 == x2:
if y1 > y2:
result_angele = 180
else:
if y1!=y2:
the_angle = int(get_true_angel(np.arctan(dx/dy)))
if x1 < x2:
if y1>y2:
result_angele = -(180 - the_angle)
elif y1<y2:
result_angele = -the_angle
elif y1==y2:
result_angele = -90
elif x1 > x2:
if y1>y2:
result_angele = 180 - the_angle
elif y1<y2:
result_angele = the_angle
elif y1==y2:
result_angele = 90
if result_angele<0:
result_angele = 360 + result_angele
return result_angele
def rotate_bound(image, angle, key_point_y):
'''
旋转图像,并取得关节点偏移量
'''
#获取图像的尺寸
(h,w) = image.shape[:2]
#旋转中心
(cx,cy) = (w/2,h/2)
# 关键点必须在中心的y轴上
(kx,ky) = cx, key_point_y
d = abs(ky - cy)
#设置旋转矩阵
M = cv2.getRotationMatrix2D((cx,cy), -angle, 1.0)
cos = np.abs(M[0,0])
sin = np.abs(M[0,1])
# 计算图像旋转后的新边界
nW = int((h*sin)+(w*cos))
nH = int((h*cos)+(w*sin))
# 计算旋转后的相对位移
move_x = nW/2 + np.sin(angle/180*np.pi)*d
move_y = nH/2 - np.cos(angle/180*np.pi)*d
# 调整旋转矩阵的移动距离(t_{
x}, t_{
y})
M[0,2] += (nW/2) - cx
M[1,2] += (nH/2) - cy
return cv2.warpAffine(image,M,(nW,nH)), int(move_x), int(move_y)
def get_distences(x1, y1, x2, y2):
return ((x1-x2)**2 + (y1-y2)**2)**0.5
def append_img_by_sk_points(img, append_img_path, key_point_y, first_point, second_point, append_img_reset_width=None,
append_img_max_height_rate=1, middle_flip=False, append_img_max_height=None):
'''
将需要添加的肢体图片进行缩放
'''
append_image = cv2.imdecode(np.fromfile(append_img_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
# 根据长度进行缩放
sk_height = int(get_distences(first_point[0], first_point[1], second_point[0], second_point[1])*append_img_max_height_rate)
# 缩放制约
if append_img_max_height:
sk_height = min(sk_height, append_img_max_height)
sk_width = int(sk_height/append_image.shape[0]*append_image.shape[1]) if append_img_reset_width is None else int(append_img_reset_width)
if sk_width <= 0:
sk_width = 1
if sk_height <= 0:
sk_height = 1
# 关键点映射
key_point_y_new = int(key_point_y/append_image.shape[0]*append_image.shape[1])
# 缩放图片
append_image = cv2.resize(append_image, (sk_width, sk_height))
img_height, img_width, _ = img.shape
# 是否根据骨骼节点位置在 图像中间的左右来控制是否进行 左右翻转图片
# 主要处理头部的翻转, 默认头部是朝左
if middle_flip:
middle_x = int(img_width/2)
if first_point[0] < middle_x and second_point[0] < middle_x:
append_image = cv2.flip(append_image, 1)
# 旋转角度
angle = get_angle(first_point[0], first_point[1], second_point[0], second_point[1])
append_image, move_x, move_y = rotate_bound(append_image, angle=angle, key_point_y=key_point_y_new)
app_img_height, app_img_width, _ = append_image.shape
zero_x = first_point[0