使用飞桨PaddleHub实现将视频动作转化为皮影戏

本文介绍了一个利用PaddleHub的人体骨骼关键点检测模型,将视频中的人物动作转化为皮影戏的动作,以此结合传统文化与AI技术的项目。项目流程包括安装依赖、检测安装、解析视频帧中人体姿态并映射到皮影上,最后生成动态皮影视频。
摘要由CSDN通过智能技术生成

背景
领略千年皮影戏魅力,传承正在消失的艺术, 皮影戏的神奇,在于小小皮影在指尖上飞舞,时而刀光剑影、时而策马扬鞭、时而缠绵悱恻,千军万马是他,单打独斗也是他。皮影戏可谓是闻名中外,它是把光影声色做到极致的一门古老艺术。 先辈门通过手艺演绎着皮影戏,同样我们也可以通过AI方式来实现。为了实现皮影戏,可以通过PaddleHub提供的人体骨骼关键点检测库完成将人体姿态检测,同时映射到皮影身上,让皮影动起来。
皮影素材
在这里插入图片描述项目实现过程中使用的Python版本为3.7.0,其他依赖库的版本分别为cv2 4.5.1.48、matplotlib 2.2.2、numpy 1.19.3、tensorflow 2.4.1。

本项目具体流程如下:

一、安装依赖库以及模型

1、安装PaddlePaddle
PaddlePaddle官网:
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/2.0/install/pip/windows-pip.html
在这里插入图片描述

python -m pip install paddlepaddle==2.0.0 -i https://mirror.baidu.com/pypi/simple

测试安装成功
在这里插入图片描述

2、安装paddlehub:
paddlehub官网:
https://paddlehub.readthedocs.io/zh_CN/develop/index.html

pip install paddlehub -i https://pypi.doubanio.com/simple

在这里插入图片描述测试安装成功:
在这里插入图片描述3、导入人体骨骼关键节点检测模型

hub install human_pose_estimation_resnet50_mpii==1.1.1

二、检测是否安装成功

1、检测图片骨骼节点

import os
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt
from matplotlib.image import imread
import numpy as np


def show_img(img_path, size=8):
    '''
        文件读取图片显示
    '''
    im = imread(img_path)
    plt.figure(figsize=(size, size))
    plt.axis("off")
    plt.imshow(im)


def img_show_bgr(image, size=8):
    '''
        cv读取的图片显示
    '''
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    plt.figure(figsize=(size, size))
    plt.imshow(image)

    plt.axis("off")
    plt.show()


pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
result = pose_estimation.keypoint_detection(paths=['test4.jpg'], visualization=True, output_dir="work/output_pose/")
print(result)

在这里插入图片描述

2、拼接皮影素材

import os
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt
from matplotlib.image import imread
import numpy as np

def show_img(img_path, size=8):
    '''
        文件读取图片显示
    '''
    im = imread(img_path)
    plt.figure(figsize=(size,size))
    plt.axis("off")
    plt.imshow(im)
def img_show_bgr(image,size=8):
    '''
        cv读取的图片显示
    '''
    image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
    plt.figure(figsize=(size,size))
    plt.imshow(image)
    
    plt.axis("off")
    plt.show() 

show_img('work/imgs/body01.jpg')
pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
result = pose_estimation.keypoint_detection(paths=['test4.jpg'], visualization=True, output_dir="work/output_pose/")
print(result)

def get_true_angel(value):
    '''
    转转得到角度值
    '''
    return value/np.pi*180

def get_angle(x1, y1, x2, y2):
    '''
    计算旋转角度
    '''
    dx = abs(x1- x2)
    dy = abs(y1- y2)
    result_angele = 0
    if x1 == x2:
        if y1 > y2:
            result_angele = 180
    else:
        if y1!=y2:
            the_angle = int(get_true_angel(np.arctan(dx/dy)))
        if x1 < x2:
            if y1>y2:
                result_angele = -(180 - the_angle)
            elif y1<y2:
                result_angele = -the_angle
            elif y1==y2:
                result_angele = -90
        elif x1 > x2:
            if y1>y2:
                result_angele = 180 - the_angle
            elif y1<y2:
                result_angele = the_angle
            elif y1==y2:
                result_angele = 90
    
    if result_angele<0:
        result_angele = 360 + result_angele
    return result_angele

def rotate_bound(image, angle, key_point_y):
    '''
    旋转图像,并取得关节点偏移量
    '''
    #获取图像的尺寸
    (h,w) = image.shape[:2]
    #旋转中心
    (cx,cy) = (w/2,h/2)
    # 关键点必须在中心的y轴上
    (kx,ky) = cx, key_point_y
    d = abs(ky - cy)
    
    #设置旋转矩阵
    M = cv2.getRotationMatrix2D((cx,cy), -angle, 1.0)
    cos = np.abs(M[0,0])
    sin = np.abs(M[0,1])
    
    # 计算图像旋转后的新边界
    nW = int((h*sin)+(w*cos))
    nH = int((h*cos)+(w*sin))
    
    # 计算旋转后的相对位移
    move_x = nW/2 + np.sin(angle/180*np.pi)*d 
    move_y = nH/2 - np.cos(angle/180*np.pi)*d
    
    # 调整旋转矩阵的移动距离(t_{
   x}, t_{
   y})
    M[0,2] += (nW/2) - cx
    M[1,2] += (nH/2) - cy

    return cv2.warpAffine(image,M,(nW,nH)), int(move_x), int(move_y)

def get_distences(x1, y1, x2, y2):
    return ((x1-x2)**2 + (y1-y2)**2)**0.5
def append_img_by_sk_points(img, append_img_path, key_point_y, first_point, second_point, append_img_reset_width=None,
                                        append_img_max_height_rate=1, middle_flip=False, append_img_max_height=None):
    '''
    将需要添加的肢体图片进行缩放
    '''
    append_image = cv2.imdecode(np.fromfile(append_img_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED)

    # 根据长度进行缩放
    sk_height = int(get_distences(first_point[0], first_point[1], second_point[0], second_point[1])*append_img_max_height_rate)
    # 缩放制约
    if append_img_max_height:
        sk_height = min(sk_height, append_img_max_height)

    sk_width = int(sk_height/append_image.shape[0]*append_image.shape[1]) if append_img_reset_width is None else int(append_img_reset_width)
    if sk_width <= 0:
        sk_width = 1
    if sk_height <= 0:
        sk_height = 1

    # 关键点映射
    key_point_y_new = int(key_point_y/append_image.shape[0]*append_image.shape[1])
    # 缩放图片
    append_image = cv2.resize(append_image, (sk_width, sk_height))

    img_height, img_width, _ = img.shape
    # 是否根据骨骼节点位置在 图像中间的左右来控制是否进行 左右翻转图片
    # 主要处理头部的翻转, 默认头部是朝左
    if middle_flip:
        middle_x = int(img_width/2)
        if first_point[0] < middle_x and second_point[0] < middle_x:
            append_image = cv2.flip(append_image, 1)

    # 旋转角度
    angle = get_angle(first_point[0], first_point[1], second_point[0], second_point[1])
    append_image, move_x, move_y = rotate_bound(append_image, angle=angle, key_point_y=key_point_y_new)
    app_img_height, app_img_width, _ = append_image.shape
    
    zero_x = first_point[0
【资源说明】 基于PaddleHub实现一键图片动漫风格化源码+详细注释-课程作业.zip 1.项目介绍 小白也能快速上手的基于PaddleHub实现一键动漫风格化 2.安装第三方库 # 参考paddlepaddle官网安装 pip install paddlepaddle-gpu==2.2.1.post112 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html pip install --upgrade paddlehub -i https://mirror.baidu.com/pypi/simple pip install opencv-python tqdm moviepy 3.项目使用 图片文件夹的Python脚本 python style_transfer_demo.py --input_path images --output_path output --model_index 0 --use_gpu True 图片文件的Python脚本 python style_transfer_demo.py --input_path images/test.jpg --output_path output --model_index 0 --use_gpu True 视频文件的Python脚本 python style_transfer_demo.py --input_path video/test.mp4 --output_path output --model_index 0 --use_gpu True 对应参数介绍: --input_path: 输入文件的路径,默认为test.jpg,其中可以是图片文件夹,图片文件,也可以是视频 图片:['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] 视频:['mp4','mov', 'avi', 'flv', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] --output_path: 输出文件的路径,默认输出文件的路径为output --model_index:动漫风格化模型的序号,默认为0,也就是'animegan_v2_hayao_99',模型列表:['animegan_v2_hayao_99','animegan_v2_shinkai_53','animegan_v2_hayao_64','animegan_v2_shinkai_33', 'animegan_v1_hayao_60','animegan_v2_paprika_74','animegan_v2_paprika_97','animegan_v2_paprika_98','animegan_v2_paprika_54'] --use_gpu: 指的是 要不要开启GPU,默认为True,默认开启GPU 4.参考链接 PaddleHub官网 AnimeGANv2 AnimeGAN动漫化模型一键应用(含动漫化小程序体验) PaddleHub一键视频动漫化 AI创造营——AnimeGAN视频动漫化一键生成 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zycwlkq

希望能帮助到您,谢谢您的打赏!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值