缩点(有向图的强连通分量)
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10,mol=1e9+7;
vector<int>h[N];
int low[N],num[N],timetop;
//low表示能到达的最早点,num表示进来的时间
int id[N],scc_idx,cnt[N];
int st[N];
stack<int>q;
typedef pair<int,int>PII;
void trajan(int a)
{
low[a]=num[a]=++timetop;
q.push(a);
st[a]=1;
for(auto it:h[a])
{
if(!low[it])
{
trajan(it);
low[a]=min(low[a],low[it]);
}
//如果当前点能走到的下一个节点已经在队列中说明当前点和下一个点必定在一个环中
else if(st[it])low[a]=min(low[a],low[it]);
//剩余的情况是走过了,但是不在队列中说明当前点是下一个点的祖宗节点。并且这两个点是有先后顺序的
}
//如果low[a]=num[a]有两种情况
/*当前点是栈的顶点,说明当前点没有成环
当前点不是栈的顶点,说明a后边所有点的最早时间就是num[a],说明这些点成环
*/
if(low[a]==num[a])
{
scc_idx++;
int y;
do{
y=q.top();
st[y]=0;
q.pop();
id[y]=scc_idx;
}while(y!=a);
}
}
int main ()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)cin>>cnt[i];
int m;
cin>>m;
while(m--)
{
int a,b;
cin>>a>>b;
h[a].push_back(b);
}
for(int i=1;i<=n;i++)
{
if(!low[i])
{
trajan(i);
}
}
vector<PII>v(scc_idx+1,{INT_MAX,0});
for(int i=1;i<=n;i++)
{
// cout<<id[i]<<" ";
auto &[x,y]=v[id[i]];
if(x>cnt[i])x=cnt[i],y=1;
else if(x==cnt[i])y++;
}
long long sum=0,mi=1;
for(int i=1;i<=scc_idx;i++)
sum=sum+v[i].first,mi=(mi*v[i].second)%mol;
cout<<sum<<" "<<mi<<"\n";
}