1.
A - 棋盘问题
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
思路:dfs。
代码:
#include <stdio.h>
#include <string.h>
char a[10][10];
int book[10];
int m;
int sum;
int n,k;
void dfs(int s)
{
int i;
if(m==k)
{
sum++;
return;
}
if(s>=n)
return;
for(i=0;i<n;i++)
{
if(a[s][i]=='#'&&book[i]==0)
{
book[i]=1;
m++;
dfs(s+1);
m--;
book[i]=0;
}
}
dfs(s+1);
}
int main()
{
int i;
while(~scanf("%d %d",&n,&k))
{
if(n==-1&&k==-1)
break;
for(i=0;i<n;i++)
scanf("%s",a[i]);
sum=0;
m=0;
dfs(0);
printf("%d\n",sum);
}
return 0;
}