Spark大数据处理讲课笔记3.1 掌握RDD的创建

本文详细介绍了Spark中的核心抽象RDD,包括RDD的概念、特点和创建方式。讲解了如何通过并行集合和从外部存储(如HDFS)创建RDD,并在Spark Shell中进行操作。此外,还探讨了在集群环境中读取文件的问题。
摘要由CSDN通过智能技术生成

零、本节学习目标

  • 了解RDD的主要特征
  • 掌握RDD的创建方式

一、RDD为何物
(一)RDD概念

  • Spark提供了一种对数据的核心抽象,称为弹性分布式数据集(Resilient Distributed Dataset,RDD)。这个数据集的全部或部分可以缓存在内存中,并且可以在多次计算时重用。RDD其实就是一个分布在多个节点上的数据集合。RDD的弹性主要是指当内存不够时,数据可以持久化到磁盘,并且RDD具有高效的容错能力。分布式数据集是指一个数据集存储在不同的节点上,每个节点存储数据集的一部分。
  • 传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式要进行大量的磁盘IO操作。Spark中的RDD可以很好的解决这一缺点。RDD是Spark提供的最重要的抽象概念,我们可以将RDD理解为一个分布式存储在集群中的大型数据集合,不同RDD之间可以通过转换操作形成依赖关系实现管道化,从而避免了中间结果的I/O操作,提高数据处理的速度和性能。

(二)RDD示例

  • 将数据集(hello, world, scala, spark, love, spark, happy)存储在三个节点上,节点一存储(hello, world),节点二存储(scala, spark, love),节点三存储(spark, happy),这样对三个节点的数据可以并行计算,并且三个节点的数据共同组成了一个RDD。
  • 分布式数据集类似于HDFS中的文件分块,不同的块存储在不同的节点上;而并行计算类似于使用MapReduce读取HDFS中的数据并进行Map和Reduce操作。Spark则包含这两种功能,并且计算更加灵活。
  • 在编程时,可以把RDD看作是一个数据操作的基本单位,而不必关心数据的分布式特性,Spark会自动将RDD的数据分发到集群的各个节点。Spark中对数据的操作主要是对RDD的操作(创建、转化、求值)。

(三)RDD主要特征

  • RDD是不可变的,但可以将RDD转换成新的RDD进行操作。
  • RDD是可分区的。RDD由很多分区组成,每个分区对应一个Task任务来执行。
  • 对RDD进行操作,相当于对RDD的每个分区进行操作。
  • RDD拥有一系列对分区进行计算的函数,称为算子。
  • RDD之间存在依赖关系,可以实现管道化,避免了中间数据的存储。

二、做好准备工作

(一)准备文件

1、准备本地系统文件

  • /home目录里创建test.txt

2、启动HDFS服务

  • 执行命令:start-dfs.sh
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值