栏目介绍: “论文快讯”栏目旨在精简地分享一周内发表在高水平期刊上的Metasurface领域研究成果,帮助读者及时了解领域前沿动态,如果对专栏的写法或内容有什么建议欢迎留言,后续会陆续开启其他专栏,敬请期待。
论文基本信息
-
标题: Neural Network‐Assisted End‐to‐End Design for Full Light Field Control of Meta‐Optics
作者:
- Hanbin Chi(湖南大学 机械与车辆工程学院)
- 通讯作者:胡跃强(湖南大学 机械与车辆工程学院)
- Xiangnian Ou(湖南大学 机械与车辆工程学院)
- Yuting Jiang(湖南大学 机械与车辆工程学院)
- Dian Yu(湖南大学 机械与车辆工程学院)
- Shaozhen Lou(湖南大学 机械与车辆工程学院)
- Quan Wang(湖南大学 机械与车辆工程学院)
- Qiong Xie(湖南大学 机械与车辆工程学院)
- 通讯作者:仇成伟(新加坡国立大学 电气与计算机工程系)
- 通讯作者: 段辉高(湖南大学 机械与车辆工程学院)
发表时间: 2025年2月14日
发表期刊: Advanced Materials(JCR-Q1,IF=27.4)
-
论文快览:
解决的问题:
传统的超表面光学设计方法受到单一波长和偏振的限制,无法实现高效的多波长、多偏振光场控制。这些方法通常需要多步设计,且在系统级的功能性和性能优化上存在较大挑战,难以突破多通道光学设计的限制,造成信号处理性能不足和制造复杂度高。
提出的方法:
本文提出了一种神经网络辅助的端到端(E2E)设计框架,利用神经网络构建可微分的前向仿真器,通过梯度优化算法直接优化超表面布局。这种方法能够同时处理多个波长、偏振和空间坐标的光场控制,避免了传统设计中的逐步匹配和误差传递,显著提高了设计效率和优化性能。
实现的效果:
实验结果表明,E2E设计框架在多波长、多偏振的全光场控制中显著优于传统设计方法。具体量化结果显示,在X偏振和Y偏振通道中,PSNR分别提高了4.26 dB和2.84 dB,SSIM分别提高了6.46倍和5.78倍。此外,三偏振多波长深度复用全息图的实验结果展示了高质量图像重建,验证了该方法的强大性能。
分析:
该论文主要体现了算法创新,通过神经网络优化和梯度计算加速光学设计过程,实现了超表面设计中多参数的全局优化,突破了传统设计的限制,推动了智能化光学设计的发展。
论文重要图文:
摘要:超表面具有独特的光-物质相互作用和广泛的设计空间,通过灵活的多参数光场控制支撑了多功能且紧凑的光学器件。然而,传统设计方法在系统级别上面临纳米结构在不同波长和偏振下复杂响应之间的复杂相互依赖问题,限制了高性能全光场控制的实现。在此,提出了一种神经网络辅助的端到端设计框架,该框架通过全球梯度优化来促进多功能超表面光学布局的全光场控制。通过在有限设计空间内实现多波长-偏振全息成像,展示了该方法相较于分步设计的优势(例如,实验中≈6倍的结构相似度指数)。通过利用分散的全参数琼斯矩阵,进一步展示了正交三偏振多波长-深度全息成像,突破了传统通道的限制。为了突出其多功能性,展示了非正交偏振(>3)用于显示、成像和计算中的任意偏振-光谱多信息处理应用。该综合框架提升了超表面光学中的光场控制,提供了更优的性能、增强的功能和更高的可靠性,从而为下一代智能光学技术铺平了道路。
图1. 偏振和波长复用超表面设计策略的比较。a) 原子级设计:基于目标光谱函数聚焦于单个超原子优化,但在组装成周期阵列时难以实现空间功能。b) 系统级分步设计:涉及相位检索、串联超原子匹配和组装的多步骤方法。尽管原子更加复杂,但通常会导致性能次优和功能通道有限。c) 系统级端到端设计:利用全球并行梯度优化,直接优化超表面布局,从复杂功能中优化。该方法通过同时考虑分散的全参数,突破功能通道的限制,并利用极简的超表面实现高性能。
图2. 神经网络辅助的超表面端到端设计用于全光场控制。a) 端到端设计框架。它从初始的超表面布局 Sinitial 开始,输入到包含神经网络辅助的分散全参数琼斯矩阵的前向仿真器中,以模拟超原子的光学特性。前向仿真器输出调制场 Ems,通过多目标损失函数与目标场 Etarget 进行评估。如果设计标准未满足,过程进入基于梯度的优化迭代循环,更新超表面布局。该循环继续,直到满足设计标准,最终输出用于多参数(包括波长 λ、偏振 p 和空间坐标 x、y、z)全光场控制的最终超表面布局 Sfinal。b) 使用FDTD方法模拟的矩形超原子在 X-偏振下、波长从400到700 nm范围内的相位 φX 和幅度 AX 的稀疏数据。这些稀疏数据作为神经网络的训练基础。c) 神经网络再生的稠密数据,展示相位 φX 和幅度 AX 的连续表示,具有高分辨率。
图3. 端到端设计与分步设计的性能提升。a) 双偏振多波长复用全息图的示意图。b) 计算的全息图在不同波长通道数下的平均RMSE,分别为分步设计(蓝色条形)和端到端设计(紫色条形)。误差条表示每个图像的标准差。c,d) 分步设计和端到端设计下,双偏振八波长全息复用的计算结果。e) 通过FDTD模拟的相位数据(橙色)和通过CGH计算的RGB波长下的相位全息图(青色)。f) 制造样品的SEM图像:顶部视图(上)和倾斜视图(下)。g,h) 分步设计计算的标量(左)、向量模拟(中)和实验测量(右)的全息图像 g) 和端到端设计 h)。数字值表示PSNR和SSIM性能指标。
图4. 正交偏振多波长-深度复用全息图的功能性突破。a) 正交偏振多波长-深度复用彩色3D全息图的示意图。b) 三偏振三波长复用3D全息图的计算结果,9N通道,其中N表示深度平面的数量。c) 标量计算的三种彩色全息图的PSNR值作为形状误差的函数,比较在优化过程中有无噪声(实线与虚线)。d) 制造样品的SEM图像:顶部视图(上)和倾斜视图(下)。比例尺:1 μm。e,f) 不同输入/输出偏振下的彩色全息图像的计算结果 e) 和实验测量 f),“彩虹”,“花朵”和“气球”每个图像都位于不同的深度平面。g) 在每个波长下实验测量的九个单色全息图像。
图5. 跨波长通道的非正交偏振用于显示和成像中的任意偏振-光谱多信息处理。a) 任意偏振-光谱多信息处理的示意图,不同类型的信息被分配到不同的空间位置。b) 六种任意偏振和三波长复用全息图的计算结果。c) 实验测量的全息图像,显示不同波长和偏振下的阿拉伯数字“1”到“6”多通道元全息图。d) 六焦点超构透镜在不同波长和偏振下的聚焦特性测量。e) 测量的波长排序效率,展示系统的光谱响应。f) 测量的偏振对比度,作为不同偏振态的函数。g) 在不同波长和偏振下测量的分辨率图像。每个图像下方展示了沿白色虚线的横截面强度分布。
图6. 任意偏振-光谱多信息处理在计算中的智能应用。a) 任意偏振-光谱多任务元分类器的示意图。偏振和光谱相关图像作为输入,由元分类器处理并输出分类结果。b) 六个通道的两分类任务的混淆矩阵,显示所有通道的高精度。c) 六个通道中类别1的盲测结果。展示输入图像、标量模拟输出、FDTD模拟输出和每个通道的能量分布。d) 六个通道中类别2的盲测结果,布局与c)相同。
参考文献:
H. Chi, Y. Hu, X. Ou, Y. Jiang, D. Yu, S. Lou, Q. Wang, Q. Xie, C.-W. Qiu, H. Duan, Neural Network-Assisted End-to-End Design for Full Light Field Control of Meta-Optics. Adv. Mater. 2025, 2419621.
DOI:https://doi.org/10.1002/adma.202419621
免责声明:
本公众号专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。