美联储历次加息周期及结果

本文回顾了美联储自上世纪80年代以来的六次加息周期,包括对全球经济的重大事件如拉美债务危机、日本经济危机、东南亚危机、互联网泡沫、次贷危机等的影响。当前正经历第七轮加息,旨在应对新冠疫情后的通胀压力。每次加息都会导致全球资金流向美国,对其他国家股市和经济带来挑战,中国股市也曾受到影响。美联储的货币政策调整对全球经济具有深远影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过去四十年,美联储共有六次加息周期,包括上世纪80年代著名的沃尔克对抗通胀。这些加息周期的类型丰富,既有供给端压力导致的高通胀,地产、股票带来的泡沫压力,也有非常规政策实施后的正常化过程。

当前正处于美联储第七轮加息周期,历次加息详细情况,如下表所示:

序号

开始时间-

结束时间

加息次数基准利率结果备注
第一轮

1983.3-1984.8

(16个月)

118.5%->11.5%拉美债务危机当时,美国经济处于复苏初期,里根政府主张减税帮助了经济的复苏、制造了更多工作机会。1981年美国的通胀率已达13.5%,接近超级通胀。1980-81年间经济处于极端的货币紧缩状态,试图积压通胀,而通胀率从1981年的超过13%降至1983年的4%以下。
第二轮

1988.3-1989.5

(14个月)

166.5%->9.8125%日本经济危机(房地产泡沫破裂)

当时,当时通胀抬头。1987年“股灾”导致美联储紧急降息救市。由于救市及时、股市下跌对经济影响不大,1988年起通胀继续上扬,美联储开始加息应对,利率在1989最终升至9.75%。

此轮紧缩使经济增长放缓,随后的油价上涨和1990年8月份开始的第一次海湾战争相关不确定性严重影响了经济活动,使货币政策转向宽松。

第三轮

1994.2-1995.2

(12个月)

73.00%->6.0%东南亚危机

当时,市场出现通胀恐慌。1990-91年经济衰退之后,尽管经济增速回升,失业率依然高企。通胀下降令美联储继续削减利率直到3%。

到1994年,经济复苏势头重燃,债券市场担心通胀卷土重来。十年期债券收益率从略高于5%升至8%,美联储将利率从3%提高至6%,使通胀得到控制,债券收益率大幅下降。此次加息也被认为是导致此后97年爆发亚洲金融危机的因素之一。

第四轮

1999.6-2000.5

(11个月)

64.75%->6.5%美国互联网泡沫

当时,互联网泡沫不断膨胀。1999年GDP强劲增长、失业率降至4%。美联储将利率下调75个基点以应对亚洲金融危机后,互联网热潮令IT投资增长,经济出现过热倾向,美联储再次收紧货币,将利率从4.75%经过6次上调至6.5%。

2000年互联网泡沫破灭和纳斯达克指数崩溃后,经济再次陷入衰退,“911事件”更令经济和股市雪上加霜,美联储随即转向,由次年年初开始连续大幅降息。

第五轮

2004.6-2006.6

(24个月)

171.00%->5.25%美国次贷危机

当时房市泡沫涌现,此前的大幅降息激发了美国的房地产泡沫。2003年下半年经济强劲复苏,需求快速上升拉动通胀和核心通胀抬头,2004年美联储开始收紧政策,连续17次分别加息25个基点,直至达到2006年6月的5.25%。

直至次贷危机引发全球金融危机,美联储再次开始降息至接近零的水平。

第六轮

2015.12-2018.12

(36个月)

90.25%->2.5%暂无代表事件

利率不停升高,对经济尤其是投资形成了较为显著的抑制,美联储随即实施货币政策正常化,提高利率水平。

本轮加息期间,美股表现强劲,美元指数和美国国债收益率双双上升。

2018年中国股市跌24.59%。

第七轮

2022.3-未知

(截止2022.12,9个月)

7

(截止2022.12)

0.25%->4.5%未知

在2020年开始的全球新冠疫情之下,美国等西方主要国家,为了拉升被疫情暴击的经济,过量的印刷了“天量货币”。

美国疫情前的资产负债表是4.2万亿美元,2022年9月美国的资产负债表是9万亿美元,2年之间印钞规模,超过了过去40年的总和。新冠疫情2年多来,各国天量的货币增发,加上俄罗斯与乌克兰的欧洲战争冲突,这两者的共同作用,引发了“全球如此剧烈的通货膨胀”。

2022年3月,美国开始加息,表面上的原因是“治理国内通胀”,实际上更深层的意图,是在“全球经济危机”中,加大美元的国际竞争能力,意图吸引欧洲以及全球的避险资金,流入到美国。

由于美元作为全球货币,是世界贸易的主要结算货币,在其利率较低时,美元会通过各种途径流入其他国家的股市、楼市。

当美国加息时,各个国家中的美元就会流回美国,外资一旦撤退,各个国家的股市和经济也会受到不同程度的影响。

美联储加息后,就意味着会有大量资金流向了美国的市场,使得美元大幅升值,那么流入股市的资金就会大大的减少,对股市形成一定的冲击。因此,美联储加息就会提高存贷款利率,一些稳妥型的用户会选择把钱放入银行,定期收取存款,利息赚取稳定的收益,而股市投资会大大减少。

美国加息给股市带来的影响,并不是全面性的,其在一定程度上也是有限制的,因为 A 股的具体运转还是得看中国的经济政策和形势。若 A 股市场的经济平稳运行,那么对 A 股嗯,市场的影响不会太强烈,毕竟外围市场的起伏波动,只会造成一时的影响,长期来看的话,中国也会采取相应的措施,去应对美国加息带来的各种不良影响。国家可能会运用宏观调控的手段去控制和调整市场的经济运行。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 片数量: - 训练集:9,134张片 - 验证集:1,529张片 - 测试集:1,519张片 总计:12,182张片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感像分析: 支持航拍像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 片规模: - 训练集:13,154张片 - 验证集:559张片 - 测试集:92张片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百里杨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值