八数码问题相关题目解法 poj1077Eight hdu5012Dice

八数码问题是bfs中的经典问题,经常也会遇到与其相似的题目。用到的思想是bfs+hash;主要是由于状态分散,无法直接用一个确定的数表示。所以导致bfs时,无法去判断一个状态是否已经被搜过。也无法用d数组去求解。这个时候就需要用到hash的方法判断当前状态是否已经被搜过。并按照搜索的顺序给每个状态编号(用这个编号代替对应的状态,与状态一一对应,为了求d[]),将所有的状态存起来,供hash查找。

值得注意的是,八数码问题的状态正好是所有的全排列(9!),由于这个特殊的原因,可以直接用每个状态对应的是第几个排列来给状态编号。这样的一一对应,可以做到当给定一个状态时,就能过直接计算出这个状态对应的编号,这样就可以直接用一个数组标记这个状态是否被搜索过,就不需要利用哈希技术来查找这个状态是否已经被搜过。

poj1077八数码问题,采用的是编号对应排列的方法。(这个用起来比较简单)

//poj1077
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<string>
#include<map>
#include<stack>
#include<set>
#define ll long long
#define MAX 370000
#define INF INT_MAX
#define eps 1e-8

using namespace std;

//用一个含有9个元素的一位数组表示状态 

int p[MAX][9];   //按全排列从小到大存放所有的状态,共9!个状态 ,数字0~9!与所有的状态形成一一对应。 
int vis[MAX],d[MAX],f[10];  

int dx[] = {0,0,1,-1};
int dy[] = {1,-1,0,0};

char dir[] = {'l','r','u','d'};

void table(){
    f[0] = 1;
    for (int i=1; i<10; i++)
        f[i] = f[i-1]*i;
}

int hash(int* a){  //求状态a[]在p[][]中的位置,即:a[]属于第几个排列; 
    int s = 0;
    for (int i = 0; i<9; i++){
        int cnt = 0;
        for (int j = i+1; j<9; j++)
            if (a[j] < a[i]) cnt++;
        s += f[8-i] * cnt;
    }
    return s;
}

int SS[9],TT[9] = {1,2,3,4,5,6,7,8,0};

int bfs(int s, int t){
    int temp[9];
    queue<int>q;
    memset(vis,0,sizeof(vis));
    d[s] = 0;
    q.push(s);
    for (int i = 0; i<9; i++) p[s][i] = SS[i];
    vis[s] = 1;
    while (!q.empty()){
        int u = q.front();
        q.pop();
        if (u == t) return d[t];
        int c;
        for (c = 0; c<9; c++) if (!p[u][c]) break;
        int x = c / 3;
        int y = c % 3;
        for (int k = 0; k<4; k++){
            int ex = x + dx[k];
            int ey = y + dy[k];
            if (ex >= 0 && ex < 3 && ey >= 0 && ey < 3){
                memcpy(temp,p[u],sizeof(temp));
                temp[c] = p[u][ex*3+ey];
                temp[ex*3+ey] = 0;
                int v = hash(temp);
                if (!vis[v]){
                    vis[v] = 1;
                    d[v] = d[u] + 1;
                    q.push(v);
                    memcpy(p[v],temp,sizeof(temp));
                }
            }
        }
    }
    return -1;
}

char ss[10];

void print_path(int s, int t){   //打印路径 
    if (s == t) return;
    int temp[9],c;
    for (c = 0; c<9; c++) if (!p[t][c]) break;
    int x = c / 3;
    int y = c % 3;
    for (int i = 0; i<4; i++){
        memcpy(temp,p[t],sizeof(temp)); 
        int ex = x + dx[i];
        int ey = y + dy[i];
        if (ex >= 0 && ex < 3 && ey >= 0 && ey < 3){
            temp[c] = p[t][ex*3+ey];
            temp[ex*3+ey] = 0;
            int v = hash(temp);
            if (d[t] == d[v] + 1 && vis[v]){
                print_path(s,v);
                printf("%c",dir[i]);
                break;
            }
        }
    }
    return;
}

int main(){
    table();
    while (scanf("%s",ss) != EOF){
        if (ss[0] == 'x')
            SS[0] = 0;
        else 
            SS[0] = ss[0] - '0';
        for (int i = 1; i<9; i++){
            scanf("%s",ss);
            if (ss[0]  == 'x')
                SS[i] = 0;
            else
                SS[i] = ss[0] - '0';
        }
        int s = hash(SS);
        int t = hash(TT);
        int ans = bfs(s,t);
   //     printf("ans = %d\n",ans);
        if (ans <= 0)
            printf("unsolvable");
        else
            print_path(s,t);
        printf("\n");
    }
    return 0;
}

hdu5012  类似于八数码问题 bfs+hash;

//hdu5012
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<string>
#include<vector>
#define MAX 100005
#define INF INT_MAX
#define eps 1e-8
#define ll long long
#define MOD 100003

using namespace std;

int p[MAX][10];

int first[MAX],next[MAX];

int rot[][6] = {{3,2,0,1,4,5},{2,3,1,0,4,5},{5,4,2,3,0,1},{4,5,2,3,1,0}};

int d[MAX];

int hash(int* a){
    int s = 0;
    for (int i = 0; i<6; i++) s = s*10 + a[i];
    return s % MOD;
}

bool cmp(int *a, int *b){
    for (int i = 0; i<6; i++) if (a[i] != b[i]) return false;
    return true;
}

bool vis(int x, int* a){
    for (int i = first[x]; i != -1; i = next[i]){
        if (cmp(p[i],a)) return true;
    }
    return false;
}

int s[10],t[10];

void insert(int x, int y){
    next[y] = first[x];
    first[x] = y;
}

int bfs(){
    memset(first,-1,sizeof(first));
    memset(next,-1,sizeof(next));
    queue<int>q;
    int cnt = 1;
    int x[10];
    for (int i = 0; i<6; i++) p[1][i] = s[i];
    int c = hash(s);
    insert(c,1);
    q.push(1);
    d[1] = 0;
    while (!q.empty()){
        int u = q.front();
        q.pop();
        if (cmp(p[u],t)) return d[u];
        for (int i = 0; i<4; i++){
            for (int j = 0; j<6; j++)
                x[j] = p[u][rot[i][j]];
            int v = hash(x);
            if (!vis(v,x)){
                cnt++;
                for (int j = 0; j<6; j++) p[cnt][j] = x[j];
                insert(v,cnt);
                q.push(cnt);
                d[cnt] = d[u] + 1;
            }
        }
    }
    return -1;
}

int main(){
    while (scanf("%d",&s[0]) != EOF){
        for (int i = 1; i<6; i++) scanf("%d",&s[i]);
        for (int i = 0; i<6; i++) scanf("%d",&t[i]);
        printf("%d\n",bfs());
    }
    return 0;
}







评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值