八数码问题是bfs中的经典问题,经常也会遇到与其相似的题目。用到的思想是bfs+hash;主要是由于状态分散,无法直接用一个确定的数表示。所以导致bfs时,无法去判断一个状态是否已经被搜过。也无法用d数组去求解。这个时候就需要用到hash的方法判断当前状态是否已经被搜过。并按照搜索的顺序给每个状态编号(用这个编号代替对应的状态,与状态一一对应,为了求d[]),将所有的状态存起来,供hash查找。
值得注意的是,八数码问题的状态正好是所有的全排列(9!),由于这个特殊的原因,可以直接用每个状态对应的是第几个排列来给状态编号。这样的一一对应,可以做到当给定一个状态时,就能过直接计算出这个状态对应的编号,这样就可以直接用一个数组标记这个状态是否被搜索过,就不需要利用哈希技术来查找这个状态是否已经被搜过。
poj1077八数码问题,采用的是编号对应排列的方法。(这个用起来比较简单)
//poj1077
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<string>
#include<map>
#include<stack>
#include<set>
#define ll long long
#define MAX 370000
#define INF INT_MAX
#define eps 1e-8
using namespace std;
//用一个含有9个元素的一位数组表示状态
int p[MAX][9]; //按全排列从小到大存放所有的状态,共9!个状态 ,数字0~9!与所有的状态形成一一对应。
int vis[MAX],d[MAX],f[10];
int dx[] = {0,0,1,-1};
int dy[] = {1,-1,0,0};
char dir[] = {'l','r','u','d'};
void table(){
f[0] = 1;
for (int i=1; i<10; i++)
f[i] = f[i-1]*i;
}
int hash(int* a){ //求状态a[]在p[][]中的位置,即:a[]属于第几个排列;
int s = 0;
for (int i = 0; i<9; i++){
int cnt = 0;
for (int j = i+1; j<9; j++)
if (a[j] < a[i]) cnt++;
s += f[8-i] * cnt;
}
return s;
}
int SS[9],TT[9] = {1,2,3,4,5,6,7,8,0};
int bfs(int s, int t){
int temp[9];
queue<int>q;
memset(vis,0,sizeof(vis));
d[s] = 0;
q.push(s);
for (int i = 0; i<9; i++) p[s][i] = SS[i];
vis[s] = 1;
while (!q.empty()){
int u = q.front();
q.pop();
if (u == t) return d[t];
int c;
for (c = 0; c<9; c++) if (!p[u][c]) break;
int x = c / 3;
int y = c % 3;
for (int k = 0; k<4; k++){
int ex = x + dx[k];
int ey = y + dy[k];
if (ex >= 0 && ex < 3 && ey >= 0 && ey < 3){
memcpy(temp,p[u],sizeof(temp));
temp[c] = p[u][ex*3+ey];
temp[ex*3+ey] = 0;
int v = hash(temp);
if (!vis[v]){
vis[v] = 1;
d[v] = d[u] + 1;
q.push(v);
memcpy(p[v],temp,sizeof(temp));
}
}
}
}
return -1;
}
char ss[10];
void print_path(int s, int t){ //打印路径
if (s == t) return;
int temp[9],c;
for (c = 0; c<9; c++) if (!p[t][c]) break;
int x = c / 3;
int y = c % 3;
for (int i = 0; i<4; i++){
memcpy(temp,p[t],sizeof(temp));
int ex = x + dx[i];
int ey = y + dy[i];
if (ex >= 0 && ex < 3 && ey >= 0 && ey < 3){
temp[c] = p[t][ex*3+ey];
temp[ex*3+ey] = 0;
int v = hash(temp);
if (d[t] == d[v] + 1 && vis[v]){
print_path(s,v);
printf("%c",dir[i]);
break;
}
}
}
return;
}
int main(){
table();
while (scanf("%s",ss) != EOF){
if (ss[0] == 'x')
SS[0] = 0;
else
SS[0] = ss[0] - '0';
for (int i = 1; i<9; i++){
scanf("%s",ss);
if (ss[0] == 'x')
SS[i] = 0;
else
SS[i] = ss[0] - '0';
}
int s = hash(SS);
int t = hash(TT);
int ans = bfs(s,t);
// printf("ans = %d\n",ans);
if (ans <= 0)
printf("unsolvable");
else
print_path(s,t);
printf("\n");
}
return 0;
}
hdu5012 类似于八数码问题 bfs+hash;
//hdu5012
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<string>
#include<vector>
#define MAX 100005
#define INF INT_MAX
#define eps 1e-8
#define ll long long
#define MOD 100003
using namespace std;
int p[MAX][10];
int first[MAX],next[MAX];
int rot[][6] = {{3,2,0,1,4,5},{2,3,1,0,4,5},{5,4,2,3,0,1},{4,5,2,3,1,0}};
int d[MAX];
int hash(int* a){
int s = 0;
for (int i = 0; i<6; i++) s = s*10 + a[i];
return s % MOD;
}
bool cmp(int *a, int *b){
for (int i = 0; i<6; i++) if (a[i] != b[i]) return false;
return true;
}
bool vis(int x, int* a){
for (int i = first[x]; i != -1; i = next[i]){
if (cmp(p[i],a)) return true;
}
return false;
}
int s[10],t[10];
void insert(int x, int y){
next[y] = first[x];
first[x] = y;
}
int bfs(){
memset(first,-1,sizeof(first));
memset(next,-1,sizeof(next));
queue<int>q;
int cnt = 1;
int x[10];
for (int i = 0; i<6; i++) p[1][i] = s[i];
int c = hash(s);
insert(c,1);
q.push(1);
d[1] = 0;
while (!q.empty()){
int u = q.front();
q.pop();
if (cmp(p[u],t)) return d[u];
for (int i = 0; i<4; i++){
for (int j = 0; j<6; j++)
x[j] = p[u][rot[i][j]];
int v = hash(x);
if (!vis(v,x)){
cnt++;
for (int j = 0; j<6; j++) p[cnt][j] = x[j];
insert(v,cnt);
q.push(cnt);
d[cnt] = d[u] + 1;
}
}
}
return -1;
}
int main(){
while (scanf("%d",&s[0]) != EOF){
for (int i = 1; i<6; i++) scanf("%d",&s[i]);
for (int i = 0; i<6; i++) scanf("%d",&t[i]);
printf("%d\n",bfs());
}
return 0;
}