2024学年山东大学创新实训 智能志愿辅助填报系统

实现该项目的重要步骤是利用AI进行数据分析及实现决策,那么如何使用AI是很重要的。在这周的工作中,我学习并了解了直接调用Deepseek API与本地部署Deepseek 蒸馏模型的区别,以便更好地再接下来的工作中使用。

一、直接调用Deepseek API

优点:

  • 零部署成本:无需维护服务器或GPU资源,直接通过HTTP请求调用。

  • 始终最新模型:API通常提供最新版本的模型(如DeepSeek-V3),性能优秀。

  • 高可靠性:由官方保障服务稳定性,适合高并发或突发流量场景。

  • 功能完整:支持完整上下文窗口(如128K tokens)和高级功能(文件解析、多轮对话等)。

缺点:

  • 持续费用:按调用次数/tokens收费,长期使用成本较高(尤其高频场景)。

  • 网络依赖:依赖API可用性和网络延迟(100-500ms级响应),不适合离线场景。

  • 数据隐私:敏感数据需传输到第三方服务器,可能不符合合规要求。

适用场景

  • 短期项目或低频使用。

  • 需要最新模型能力(如复杂推理)。

  • 无本地GPU资源或运维能力。

二、部署Deepseek 蒸馏模型

优点:

  • 长期成本低:一次部署后无按量费用,适合高频调用。

  • 低延迟:本地推理(尤其GPU加速)可达到10-100ms级响应。

  • 数据隐私:数据完全留在本地。

  • ※可定制性:可微调(Fine-tune)模型适配特定任务(如领域术语优化)。

缺点:

  • 部署复杂度高:需配置GPU服务器(如A100)、CUDA环境及推理框架(vLLM、Transformers)。

  • 性能妥协:蒸馏模型体积小但能力弱于原模型(如参数量减少50%+,精度下降5-15%)。

  • 维护成本:需监控资源占用、模型更新、扩缩容等。

适用场景

  • 长期/高频使用的生产环境。

  • 对延迟或隐私要求严苛的场景。

  • 有足够技术团队和硬件资源。

 综合学习过程,部署Deepseek的蒸馏模型将是本项目所采用的方式,预期将部署1.5B的蒸馏模型。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值