实现该项目的重要步骤是利用AI进行数据分析及实现决策,那么如何使用AI是很重要的。在这周的工作中,我学习并了解了直接调用Deepseek API与本地部署Deepseek 蒸馏模型的区别,以便更好地再接下来的工作中使用。
一、直接调用Deepseek API
优点:
-
零部署成本:无需维护服务器或GPU资源,直接通过HTTP请求调用。
-
始终最新模型:API通常提供最新版本的模型(如DeepSeek-V3),性能优秀。
-
高可靠性:由官方保障服务稳定性,适合高并发或突发流量场景。
-
功能完整:支持完整上下文窗口(如128K tokens)和高级功能(文件解析、多轮对话等)。
缺点:
-
持续费用:按调用次数/tokens收费,长期使用成本较高(尤其高频场景)。
-
网络依赖:依赖API可用性和网络延迟(100-500ms级响应),不适合离线场景。
-
数据隐私:敏感数据需传输到第三方服务器,可能不符合合规要求。
适用场景:
-
短期项目或低频使用。
-
需要最新模型能力(如复杂推理)。
-
无本地GPU资源或运维能力。
二、部署Deepseek 蒸馏模型
优点:
-
长期成本低:一次部署后无按量费用,适合高频调用。
-
低延迟:本地推理(尤其GPU加速)可达到10-100ms级响应。
-
数据隐私:数据完全留在本地。
-
※可定制性:可微调(Fine-tune)模型适配特定任务(如领域术语优化)。
缺点:
-
部署复杂度高:需配置GPU服务器(如A100)、CUDA环境及推理框架(vLLM、Transformers)。
-
性能妥协:蒸馏模型体积小但能力弱于原模型(如参数量减少50%+,精度下降5-15%)。
-
维护成本:需监控资源占用、模型更新、扩缩容等。
适用场景:
-
长期/高频使用的生产环境。
-
对延迟或隐私要求严苛的场景。
-
有足够技术团队和硬件资源。
综合学习过程,部署Deepseek的蒸馏模型将是本项目所采用的方式,预期将部署1.5B的蒸馏模型。