综述
对数据进行排序的标准在不同的应用场合是不同的。一般情况下,排序标准是很自然的,例如数字、字母顺序。对于字母字符和非字母字符,通常根据其ASCII码进行排序。
比较次数和数据移动次数是排序算法的关键属性。但在做选择时,一定要考虑实际情况。例如,较简单的关键字比如整数或字符,比较会快一点,代价不大;如果比较的是字符串或数字数组,那么比较的代价会增加,这时对比较效率的考量就很重要。另一方面,如果移动的数据项很大,例如结构,那么在考虑效率时,移动成本会非常突出。因此,所有理论上的考虑都应根据实际应用再三权衡。
对于一些数量较少的数据来说,简单的算法通常比复杂的算法执行得更好,只有在数据集合很大时,复杂算法的效率优势才能明显体现出来
基本排序算法
1. 插入排序 O(n^2)
实现:
template<class T>
void insertSort(T a[], int n)
{
for (int i = 1, j; i < n; i++)
{
T temp = a[i];
for (j = i; j > 0 && a[j - 1] > temp; j--)
a[j] = a[j - 1]; //将大于a[i]的所有元素a[j]都移动一个位置,将a[i]放在合适的位置上
a[j] = temp;
}
}
2. 选择排序 O(n^2)
实现:
template<class T>
void selectSort(T a[], int n)
{
for (int i = 0; i < n - 1; i++)
{
for (int j = i + 1; j < n; j++)
{
if (a[i] > a[j]) //找出元素a[i],...,data[n-1]中最小的元素</span></strong></span>
swap(a[i], a[j]) //与a[i]交换
}
}
}
3. 冒泡排序 O(n^2)
实现:
template<class T>
void bubbleSort(T a[], int n)
{
for (int i = 0; i < n - 1; i++)
{
for (int j = n - 1; j > i; j--)
{
if (a[j-1] > a[j]) <span style="white-space:pre"> </span>//如果两者逆序,交换a[j] 与a[j-1]
swap(a[j-1], a[j]);
}
}
}
4. 梳排序 O(nlgn)
实现:
template<class T>
void combSort(T a[], int n)
{
int step = n, j, k; //step1: 对数据进行预处理,正式排序前将一些大的元素先移动到后面
while ((step = int(step / 1.3)) > 1) //大量的实验表明:) 公比q=1/1.3
{
for (j = n - 1; j >= step; j--)
{
k = j - step;
if (a[j] < a[k])
swap(a[j], a[k]);
}
}
bool again = true; //step2: bubble sort+ 是否排序的标志
for (int i = 0; i < n - 1 && again; i++) //最坏情况仍是O(n^2)
{
for (j = n - 1, again = false; j > i; j--)
{
if (a[j - 1]>a[j])
{
swap(a[j - 1], a[j]);
again = true; <span style="white-space:pre"> </span>//如果没有交换,则排序已完成,停止排序
}
}
}
}
参考资料:
《数据结构与算法分析——C语言描述》
《C++数据结构与算法》