- 博客(19)
- 收藏
- 关注
原创 Curriculum Training模型
摘要: Curriculum Training(课程学习)是一种模仿人类渐进学习过程的机器学习训练策略,通过从简单到复杂逐步提高任务难度来优化模型性能。其核心包括数据难度排序、分阶段训练和动态调整超参数。方法分为预定义课程(手动标注难度)和自动化课程(动态评估样本)。该策略可提升学习效率、泛化能力和模型鲁棒性,广泛应用于自然语言处理(如从短句到长文训练)、计算机视觉(如从清晰图像到复杂场景)和强化学习。关键实现需考虑样本排序逻辑、阶段划分策略及防遗忘机制,通过合理设计显著提升复杂任务下的训练效果。
2025-06-13 10:44:21
380
原创 DEEPPOLAR(3)——DEEPOLAR代码
原文:《DEEPPOLAR: Inventing Nonlinear Large-Kernel Polar Codes via Deep Learning》
2025-05-13 07:45:00
863
原创 构建DEEPPOLAR ——Architecture for DEEPPOLAR (256,37)
DEEPPOLAR码依赖于Polar码的编码和解码结构,与Polar码相对应的特征确实具有信息性。编码器是大小不等的内核的集合ℓ = 16,每个都由神经网络f建模。解码器内核f包含ℓ = 16 子网络。编码器是大小为的内核的集合ℓ = 16,每个都由神经网络g建模。,因此这些辅助信息在学习过程中被证明是有用的。然而,值得注意的是,所学习的。,每个子网络负责解码内核的第i个位置。神经网络更难学习乘法策略。一个关键的设计选择是。
2025-05-12 21:45:57
533
原创 大核极坐标码
大核极性码(ℓ>2)的SC解码操作与原始极性码相似,但迭代计算概率的复杂性随ℓ增加而显著提高,使得大核解码成本高昂。然而,近年研究(如Abbasi & Viterbo, 2020; Gupta et al, 2021; Trofimiuk & Trifonov, 2021)提出了有效的大核极性码解码方法。DEEPPOLAR通过扩展核大小至√n并引入神经网络参数化编码和解码函数,实现了对大核极性码的自动搜索与优化。尽管在大型核空间中进行详尽搜索不可行,但通过限制搜索空间和采用高效解码方法
2025-05-12 18:11:48
339
原创 DEEPPOLAR:通过深度学习发明非线性大核极坐标码(2)
文章探讨了信道编码技术,特别是极化码(Polar Codes)及其在深度学习中的应用。极化码由Erdal Arıkan提出,是首个在保持低编码和解码复杂度的同时实现香农容量的确定性码结构。文章详细描述了极化码的编码和解码过程,包括使用Plotkin变换的递归编码和连续抵消(SC)算法的解码。此外,文章还介绍了大内核Polar码的概念,这些码通过增加内核大小来提高性能,尽管这会增加解码复杂度。最后,文章提出了一种新的方法,通过将内核大小扩展并参数化为神经网络,设计出非线性的大内核Polar码,发现更可靠的结构
2025-05-11 19:46:50
814
原创 连续抵消解码器--Successive Cancellation decoder(SC 解码器)
本文介绍了Arikan(2009)提出的连续取消解码(SC)算法,该算法用于极性码的解码。SC算法从u0开始按顺序解码比特,冻结的比特节点总是被解码为0。在解码过程中,使用对数似然比(LLR)代替概率以避免数值溢出。极性码的二叉树结构被用来简化解码过程,每个节点通过消息传递进行更新。为了降低计算成本,f函数被近似为硬件友好的最小和版本。算法从根节点开始,遍历到叶节点,并在每个节点执行一系列操作,最终在叶节点基于LLR的符号做出解码决定。
2025-05-11 19:45:38
458
原创 DEEPPOLAR:通过深度学习发明非线性大核极坐标码(1)
《DEEPPOLAR: Inventing Nonlinear Large-Kernel Polar Codes via Deep Learning》提出了一种名为DEEPPOLAR的新型Polar码,通过深度学习技术扩展了传统的Polar编码框架。DEEPPOLAR码利用更大的内核大小,并通过神经网络对这些内核和匹配的解码器进行参数化,从而提高了编码的可靠性。研究结果表明,与现有的神经代码和传统的Polar代码相比,DEEPPOLAR码在利用更大内核大小方面表现更优,显著提升了性能。此外,研究还开发了一种
2025-05-11 16:23:44
1119
原创 【论文学习】一种用于极坐标码的BP-NN解码算法
该算法为BP算法和NND之间的权衡。当NND部分较大时,解码器结构和解码性能更接近传统的神经网络解码器。与[12]中的算法(我们选择Nsub=16)相比,当码长较长时,我们提出的算法具有更好的延迟性能。
2025-03-20 20:34:49
1035
原创 【论文学习】极性码部分置换因子图的BP解码和SGRAND--2
首先,初始化消息Ri,j和Li,j。接下来,在原始因子图上,依次计算R和L,并检查终止条件。如果未满足终止条件,则重新计算R和L。当迭代次数达到限制(迭代次数)时,随机排列因子图的阶段。接下来,在初始化消息R和L之后,在置换因子图上重复消息更新。当更新消息的迭代次数再次达到限制时,再次随机排列因子图。继续此过程,直到满足终止条件或排列数量达到限制(qmax次)。
2025-03-19 21:40:30
653
原创 【论文学习】极性码部分置换因子图的BP解码和SGRAND
极坐标码是一种可证明具有容量的纠错码,适用于纠错和信源编码,受限编码和多址信道。许多解码已经提出了用于极坐标码的方案,包括CRC辅助连续对消列表解码(CA-SCL),以其卓越的纠错性能。1、使用部分置换因子图(PPFG)的BP解码尽管不如CA-SCL解码,但表现出良好的性能。2、猜测随机加性噪声解码(GRAND)是一种通用的解码方法线性码方案。3、软格兰(SGRAND)表现出色尽管Polar码的时间复杂度很高,但它的性能仍然很好。
2025-03-13 14:26:38
935
原创 Polar码基础概念及入门——Sionna平台的使用(1)
诺尔实验室研发的Sionna平台不管是对长码还是短码都有非常有帮助。作为方向是Polar码的学习者,可以直接利用Sionna平台上的提供的开源代码直接搭建自己的encoder或者decoder。鉴于翻遍了全网也没找到sionna平台的指导手册,在此按照在自己的经验制作了一个手册。此博客只针对我自己的方向(Polar码)编写了手册,如果要参考LDPC或者Turbo码,建议登录Sionna平台进行查看。。只需几个命令,我们就可以模拟许多5G 兼容组件的 PHY 层链路级性能,包括轻松可视化结果。
2024-10-11 19:57:12
1525
原创 VXLAN及相关组件
云主机(VM):客户购买的云主机实例(instance);计算节点(HOST):承载云主机实例的物理服务器:OVS(Open Virtual Switch):为云主机提供网络连接功能的虚拟交换机,运行在计算节点内部;朋安全组:针对单个云主机做访问控制的安全组件,运行在 OVS 内部;TGW:作为云主机网关承载云主机出入 VPC的流量;
2024-10-11 17:13:16
1705
原创 传统网络中的VPC产品介绍
子网内互通,通过 VLAN 实现同网段的服务器ARP协议交豆,ARP-requ0s 是广播包,会通过二层交换机的同 VLAN 范围内广播发送给目标服务器,目标服务器进行ARP-Reply;VPC 内跨子网,通过VRF内进行三层路由,实现不同子网之间的互访;VPC 之间的隔离,VLAN 隔离了二层网络,VRF隔离了三层网络:。1、通过将同子网服务器分配在同- van 实现同子网内服务器二层网络可达。2、通过将同 VPC 下子网网关分配在同- VRF 实现跨子网三层可达;1、同子网内服务器二层网络可达;
2024-10-11 17:12:19
411
原创 SDN 软件定义网络
是2节点部署,通过节点管理IP的TCP 6633端口对外提供服务,并主动发起到计算节点管理IP 的TCP 6640 端口来管理计算节点;是 2 节点部要,通过节点管理IP的 TCP 8181端口对外提供服务nginx 组件通过 keepalived 配置虚拟 IP 作为服务 IP,并通过在服务 IP 上监听的 TCP 8181端口,转发到taitan 的TCP 8181端口,实现 taitan 的双活负载;taitan 节点的核心作用为接受上层传过来的指令,并解析为 SDN 需要进行的操作;
2024-10-11 17:09:54
1051
原创 手动配TCP端口应该怎么做?
打开“控制面板” -> “系统和安全” -> “Windows 防火墙” -> “高级设置”。在macOS上,您可以使用内置的防火墙工具“防火墙”来配置端口。选择适用的配置文件,通常是“公司”和“私有”,然后点击“下一步”。打开“系统偏好设置” -> “安全性与隐私” -> “防火墙”。选择“TCP”,并输入6633作为本地端口,点击“下一步”。给规则命名,例如“允许6633端口通信”,然后点击“完成”。选择“TCP”,然后在“特定端口”框中输入6633。在向导中选择“端口”,然后点击“下一步”。
2024-10-11 17:03:40
903
原创 云计算产品一览
ELB 收到流量后会对流量做 f-NAT,将源 IP 地址转换为 ELB 自己的网卡 IP,将目的 IP 地址转换成后端云主机内网IP,将流量发送回TGW;TGW 收到流量后,将相关流量根据目的IP 地址,转发到对应的云主机;由 SDN 控制器通过 DHCP 向云主机下发到云存储的路由,指向IGW的overayIP云主机将访问存储的流量发送给IGW;不同 VPC 的云主机之间互访的流量:先从云主机到 TGW;再由对端 TGW 的 overlay 接口转发到对端云主机。云主机访问云专线的流量。
2024-10-10 17:25:34
458
原创 私有云和虚拟化技术
DPDK绕过了 Linux 内核协议栈对数据包的处理过程,在用户空间实现了一套数据平面来进行数据包的收发与处理。在内核看来,dpdk 就是一个普通的用户态进程,它的编译、连接和加载方式和普通程序没有什么两样。DPDK(Data Plane Development Kit)应用程序运行在操作系统的User space,利用自身提供的效据面库进行收发包处理,绕过了Linux内核态协议栈,以提升报文处理效率。基于X86服务器、存储、交换设备,来取代通信网的那些私有专用网元设备。:公有云、私有云、混合云、社区云。
2024-10-08 20:33:44
264
原创 公有云——天翼云4.0及负载均衡相关介绍
作为第七代云主机,采用第三代Intel至强可扩展处理器(Ice Lake),基于新一代虚拟化平台,使用NUMA绑定技术。
2024-10-08 19:12:02
2481
原创 支持向量机
在以前的学习中我们知道,只要一个样本集线性可分,就肯定存在无数多解,解区中任何一个向量都是解向量。感知器算法采用不同的初始值和不同的迭代参数就会得到不同的解,如图 4-8 所示,那么这些解哪一个更好呢?一个超平面,如果它能够将训练样本没有错误地分开,并且两类训练样本中离超平面最近的样本与超平面之间的距离是最大的,则把这个超平面称作最优分类超平面(optimal seperating hyperplane),简称最优超平面。
2023-11-10 13:36:20
2371
1
DEEPPOLAR:通过深度学习发明非线性大核极坐标码
2025-05-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人