机器学习
文章平均质量分 78
ZYM66
苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
展开
-
机器学习必会之归一化,标准化, 正则化
归一化是为了消除不同数据之间的量纲,方便数据比较和共同处理,比如在神经网络中,归一化可以加快训练网络的收敛性;标准化是为了方便数据的下一步处理,而进行的数据缩放等变换,并不是为了方便与其他数据一同处理或比较,比如数据经过零-均值标准化后,更利于使用标准正态分布的性质,进行处理;正则化而是利用先验知识,在处理过程中引入正则化因子(regulator),增加引导约束的作用,比如在逻辑回归中使用正则化,可有效降低过拟合的现象。原创 2022-10-04 14:26:58 · 532 阅读 · 0 评论 -
机器学习中,什么是线性和非线性?
非线性(non-linear),即 变量之间的数学关系,不是直线而是曲线、曲面、或不确定的属性,叫非线性。非线性是自然界复杂性的典型性质之一;与线性相比,非线性更接近客观事物性质本身,是量化研究认识复杂知识的重要方法之一;凡是能用非线性描述的关系,通称非线性关系。狭义的非线性是指不按比例、不成直线的数量关系,无法用线性形式表现的数量关系,如曲线、曲面等。原创 2022-10-04 09:52:40 · 3051 阅读 · 0 评论 -
由Cross-Entropy引出关于信息熵的思考
众所周知,在机器学习中的分类任务中,我们最常用的损失函数就是,它是是非常重要的损失函数,也是应用最多的损失函数之一.但是其原理是什么呢?尽管入门机器学习已经有将近一年的时间,但是对于此事并不清楚,说明个人的知识体系还有很多待完善的地方,今天忙中偷闲就把这个坑给填上.我在油管上找到了一个非常好的视频,今天我就把我理解的这个视频中的东西写下来,为了尊敬原作者,这里先贴上原视频链接https://www.youtube.com/watch?...原创 2022-08-14 00:14:29 · 170 阅读 · 0 评论 -
强化学习算法Q-Learning
走过一步之后对上一步的价值进行评价(经验)原创 2022-08-08 11:19:18 · 901 阅读 · 0 评论