最后一个萨满
码龄10年
求更新 关注
提问 私信
  • 博客:43,955
    43,955
    总访问量
  • 12
    原创
  • 23
    粉丝
  • 24
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2015-03-05

个人简介:又红又正!

博客简介:

BboySummer

博客描述:
又红又正!
查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得19次评论
  • 获得21次收藏
创作历程
  • 12篇
    2017年
TA的专栏
  • 机器学习笔记
    3篇
  • TensorFlow
    9篇
  • 增强学习
    2篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

473人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

[TensorFlow]入门学习笔记(6)-Tensorboard简易教程和模型保存

模型保存tf.train.Saver()The Saver class adds ops to save and restore variables to and from checkpoints. It also provides convenience methods to run these ops.两个重要的函数。 一个是saver.save() 将某个session中的模型和参数都保存在
原创
发布博客 2017.05.31 ·
5098 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

[TensorFlow]入门学习笔记(5)-循环神经网络RNN

前言关于循环神经网络的理论推导和证明,推荐去看论文。参考资料。https://colah.github.io/posts/2015-08-Understanding-LSTMs/https://r2rt.com/styles-of-truncated-backpropagation.html本章主要写循环神经网络RNN.基本的RNN,双向LSTM,动态LSTM。 训练集用MNIST,用作分类问
原创
发布博客 2017.05.25 ·
1580 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

[增强学习][Reinforcement Learning]学习笔记与回顾-2-马尔可夫决策过程MDP

Markov Decision Processes前言本文主要是视频学习的总结与回顾,想要了解更多内容请看视频或者学习专业课程。这一节主要是说马尔可夫决策过程-Markov Decision Processes,也成MDP。 在了解MDP之前,如果大家了解过马尔可夫链(markov chain),或者机器学习中的隐马尔可夫过程,那么对于马尔可夫性就会有一定了解,即无后效性。Introduction
原创
发布博客 2017.05.24 ·
3766 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

[TensorFlow]入门学习笔记(4)-BasicModel 线性回归,逻辑回归和最近邻模型

BasicModel模型搭建前言在写TensorFlow实战的过程中,发现很多TensorFlow的函数,包括流程写的很不舒服,想了想,觉得还是基本功不够扎实。直接上手神经网络模型有时候会忽略本身模型之间的数学逻辑,导致写代码的时候总是写的巨丑又慢。所以这一章主要是回炉的过程,对每一个代码架构进行详细的阐述。BasicModel主要讲三个模型,线性模型,逻辑回归和最近邻模型。最邻近模型在最近邻模型中
原创
发布博客 2017.05.23 ·
1778 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

[增强学习][Reinforcement Learning]学习笔记与回顾-1

引言增强学习这几篇博客在于学习增强学习中所获得知识的理解与回顾,如果想要深入学习增强学习,请参考后文所列出的资料和书籍。本文只用于复习与理解。Introduction to Reinforcement Learning1.领域交叉这张图详尽的描述了增强学习与各个领域的交集,可以很多领域都涉及增强学习过程,自认为RL可能是科学这个空间里最接近强人工智能的一项,看到训练出的AI完成游戏的过程,就像是训练
原创
发布博客 2017.05.18 ·
3085 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

[TensorFlow实战练习]3-高层API-tf.contrib.learn练习

前面两个练习都是用TensorFlow Core写的,相对于数据流图的概念比较清晰。TensorFlow本身也封装了很多高层API,方面我们做开发方便。很多模型和函数都有(东西太多了完全看不完啊)。因为是封装后的模型,就不怎么逐步解释了。主要是process-fit-evaluate-predict过程。直接贴代码 本来是跟着书学习的,奈何现在的是API是1.1。0.6的教程有太多的不一样。下面贴的
原创
发布博客 2017.05.15 ·
1062 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[TensorFlow实战练习]2-对推特数据的情绪分析分类

前言本实战延续上一贴的内容,主要是学习文本数据分类过程,相比第一个实战练习,讲一下不同和优化过程。数据量增加,有160万条推特数据,我的小Air完全读不下这么多。大数据处理方面还有很多工作要去做。数据增大带来的是使用TFRecord去读取和处理数据,这样会极大的方便我们之后的队列处理过程。相比上一个实战过程,不在使用readline这种读取方法,利用pandas对原始数据进行处理,还是因为数据
原创
发布博客 2017.05.12 ·
2420 阅读 ·
0 点赞 ·
4 评论 ·
6 收藏

[TensorFlow实战练习]1-对电影评论的分类

英文电影评论的分类本实战主要练习如何对简单的文本进行分类,练习word2vector过程,并且简单搭建feed-forward结构。实战目标:对英文电影评论分类数据集 neg.txt:5331条负面电影评论(http://blog.topspeedsnail.com/wp-content/uploads/2016/11/neg.txt)pos.txt:5331条正面电影评论 (http://
原创
发布博客 2017.05.10 ·
1964 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

[TensorFlow]入门学习笔记(3)-图像预处理

图像预处理前言因为在做目标追踪方面,一直在matlab中写代码,不得不说改代码改的又复杂又难改,优化难做啊。就把图像预处理过程直接放到tensorflow中学习吧。TFRecord数据格式对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yield 使用更为简洁,之前我一直用的这个方法)。 如果数据量较大,这样的方法就不适用了,因
原创
发布博客 2017.05.06 ·
7663 阅读 ·
3 点赞 ·
0 评论 ·
20 收藏

[TensorFlow]入门学习笔记(2)-卷积神经网络mnist手写识别

1.手写识别案例Mnist手写图片识别是TensorFlow的经典案例。从from tensorflow.examples.tutorials.mnist import input_data,这里,mnist是一个轻量级的类。它以Numpy数组的形式存储着训练、校验和测试数据集。同时提供了一个函数,用于在迭代中获得minibatch,后面我们将会用到。2.重点概念阐述在实现使用卷积神经网络做mnis
原创
发布博客 2017.04.19 ·
2636 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

[TensorFlow]修炼tfboy入门学习笔记-1

TensorFlow 入门学习最近开始学习TensorFlow,看到在github上tf持续升温。自己也努力修炼成一个tfboy吧。TensorFlow使用图来表示计算任务,使用tensor表示数据,在session中执行图,通过变量维护图的状态,使用feed和fetch 在图中赋值或者获取数据在我自己的理解,tensorflow本身是一个数据流图的形式,每个节点称为op(operat
原创
发布博客 2017.04.12 ·
1407 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

[NLP][Python]基于keras和LSTM的文本生成

RNN and LSTM学习如何使用RNN来预测和序列处理。 循环神经网络除了用于预测模型(做出预测)之外,他们还可以学习问题的序列,然后为问题域生成全新的合理序列。 初次尝试将问题分解为三个子问题。 - 1.下载一个免费的文本语料库,您可以使用它来训练文本生成模型 - 2.如何将文本序列的问题构建成循环神经网络生成模型 - 3.如何开发一个LSTM来为给定的问题生成合理的文本序列实验利用
原创
发布博客 2017.04.11 ·
11494 阅读 ·
5 点赞 ·
4 评论 ·
14 收藏