[TensorFlow]入门学习笔记(5)-循环神经网络RNN

本文详细介绍如何使用TensorFlow实现三种类型的循环神经网络(RNN),包括简单的RNN、双向LSTM和动态RNN,并通过MNIST数据集进行训练验证。
部署运行你感兴趣的模型镜像

前言

关于循环神经网络的理论推导和证明,推荐去看论文。参考资料。

Simple RNN

  • 输入为[batch_size,n_step,n_input].
  • reshape为[n_step,[batch,n_input]]
  • 网络架构h_t输出的维度为512
  • 网络经过CELL输出为(?,512)
  • 然后进行wx+b
  • softmax 的交叉熵 ,就是output 在softmax之后求loss
# -*- coding: UTF-8 -*

import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data

#加载数据
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)

learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10

n_input = 28
n_steps = 28
n_hidden = 512 #h_t输出的维度
n_clssses = 10

#tf graph input
x = tf.placeholder(tf.float32,[None,n_steps,n_input])
y = tf.placeholder(tf.float32,[None,n_clssses])

#创建w和b
W = {
    'out':tf.Variable(tf.random_normal([n_hidden,n_clssses]))
}
b = {
    'out':tf.Variable(tf.random_normal([n_clssses]))
}

def RNN(x,W,b):
    x = tf.unstack(x,n_steps,1)
    #forget_bias 为设置遗忘门的参数
    lstm_cell = rnn.BasicLSTMCell(n_hidden,forget_bias=1.0)

    #     #static_rnn(
    #     cell,
    #     inputs,
    #     initial_state=None,
    #     dtype=None,
    #     sequence_length=None,
    #     scope=None
    # )
    #cell: An instance of RNNCell.
    #inputs: A length T list of inputs, each a Tensor of shape [batch_size, input_size], or a nested tuple of such elements.
    outputs,states = rnn.static_rnn(lstm_cell,x,dtype=tf.float32)
    return tf.matmul(outputs[-1],W['out']) + b['out']

pred = RNN(x,W,b)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=pred))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

#评估模型
correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    step = 1
    while step * batch_size < training_iters:
        batch_x,batch_y = mnist.train.next_batch(batch_size)
        batch_x = batch_x.reshape((batch_size,n_steps,n_input))
        sess.run(optimizer,feed_dict={x:batch_x,y:batch_y})
        if step % display_step == 0:
            acc = sess.run(accuracy,feed_dict={x:batch_x,y:batch_y})
            loss = sess.run(cost,feed_dict={x:batch_x,y:batch_y})
            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
                  "{:.6f}".format(loss) + ", Training Accuracy= " + \
                  "{:.5f}".format(acc)
        step+=1

    print "Optimization Finished!"

    # Calculate accuracy for 128 mnist test images
    test_len = 128
    test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
    test_label = mnist.test.labels[:test_len]
    print "Testing Accuracy:", \
        sess.run(accuracy, feed_dict={x: test_data, y: test_label})

双向LSTM bidirectional rnn

基本架构与simple是一样的。不同的在于。

  • cell 分为fw,bw前向和后向的cell
  • 两个cell的参数相加为h_t输出维度
  • W的维度为前后向cell相加的维度
# -*- coding: UTF-8 -*

import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)

#parameters
learning_rate = 0.001
training_iter = 100000
batch_size = 128
display_step = 10

#network parameters
n_input = 28
n_steps = 28
n_hidden = 512
n_classes = 10

#定义占位符
x = tf.placeholder(tf.float32,[None,n_steps,n_input])
y = tf.placeholder(tf.float32,[None,n_classes])

#定义权重和偏置
weights = {
    # Hidden layer weights => 2*n_hidden because of foward + backward cells
    'out':tf.Variable(tf.random_normal([2*n_hidden,n_classes]))
}
biases = {
    'out':tf.Variable(tf.random_normal([n_classes]))
}

def BiRNN(x,weights,biases):
    x = tf.unstack(x,n_steps,1)

    lstm_fw_cell = rnn.BasicLSTMCell(n_hidden,forget_bias=1.0)
    lstm_bw_cell = rnn.BasicLSTMCell(n_hidden,forget_bias=1.0)
    output,_,_ = rnn.static_bidirectional_rnn(lstm_fw_cell,lstm_bw_cell,x,dtype=tf.float32)

    return tf.matmul(output[-1],weights['out'])+biases['out']

pred = BiRNN(x,weights,biases)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=pred))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

#评估模型
correct_pred = tf.equal(tf.argmax(y,1),tf.argmax(pred,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    step = 1
    while step*batch_size < training_iter:
        batch_x,batch_y = mnist.train.next_batch(batch_size)
        #reshape
        batch_x = batch_x.reshape((batch_size,n_steps,n_input))
        sess.run(optimizer,feed_dict={
            x:batch_x,
            y:batch_y
        })

        if step % display_step == 0:
            acc = accuracy.eval(feed_dict={x:batch_x,y:batch_y})
            loss = cost.eval(feed_dict={x:batch_x,y:batch_y})

            print "Iter " + str(step * batch_size) + ", Minibatch Loss= " + \
                  "{:.6f}".format(loss) + ", Training Accuracy= " + \
                  "{:.5f}".format(acc)

        step+=1

    print "Optimization Finished!"

    test_len = 128
    test_X = mnist.test.images[:test_len].reshape((-1,n_steps,n_input))
    test_y = mnist.test.labels[:test_len]

    print "Testing Accuracy:",\
            sess.run(accuracy,feed_dict={x:test_X,y:test_y})

dynamic rnn

from __future__ import print_function

import tensorflow as tf
import random


# ====================
#  TOY DATA GENERATOR
# ====================
class ToySequenceData(object):
    """ Generate sequence of data with dynamic length.
    This class generate samples for training:
    - Class 0: linear sequences (i.e. [0, 1, 2, 3,...])
    - Class 1: random sequences (i.e. [1, 3, 10, 7,...])
    NOTICE:
    We have to pad each sequence to reach 'max_seq_len' for TensorFlow
    consistency (we cannot feed a numpy array with inconsistent
    dimensions). The dynamic calculation will then be perform thanks to
    'seqlen' attribute that records every actual sequence length.
    """

    def __init__(self, n_samples=1000, max_seq_len=20, min_seq_len=3,
                 max_value=1000):
        self.data = []
        self.labels = []
        self.seqlen = []
        for i in range(n_samples):
            # Random sequence length
            len = random.randint(min_seq_len, max_seq_len)
            # Monitor sequence length for TensorFlow dynamic calculation
            self.seqlen.append(len)
            # Add a random or linear int sequence (50% prob)
            if random.random() < .5:
                # Generate a linear sequence
                rand_start = random.randint(0, max_value - len)
                s = [[float(i) / max_value] for i in
                     range(rand_start, rand_start + len)]
                # Pad sequence for dimension consistency
                s += [[0.] for i in range(max_seq_len - len)]
                self.data.append(s)
                self.labels.append([1., 0.])
            else:
                # Generate a random sequence
                s = [[float(random.randint(0, max_value)) / max_value]
                     for i in range(len)]
                # Pad sequence for dimension consistency
                s += [[0.] for i in range(max_seq_len - len)]
                self.data.append(s)
                self.labels.append([0., 1.])
        self.batch_id = 0

    def next(self, batch_size):
        """ Return a batch of data. When dataset end is reached, start over.
        """
        if self.batch_id == len(self.data):
            self.batch_id = 0
        batch_data = (self.data[self.batch_id:min(self.batch_id +
                                                  batch_size, len(self.data))])
        batch_labels = (self.labels[self.batch_id:min(self.batch_id +
                                                      batch_size, len(self.data))])
        batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id +
                                                      batch_size, len(self.data))])
        self.batch_id = min(self.batch_id + batch_size, len(self.data))
        return batch_data, batch_labels, batch_seqlen


# ==========
#   MODEL
# ==========

# Parameters
learning_rate = 0.01
training_iters = 1000000
batch_size = 128
display_step = 10

# Network Parameters
seq_max_len = 20  # Sequence max length
n_hidden = 64  # hidden layer num of features
n_classes = 2  # linear sequence or not

trainset = ToySequenceData(n_samples=1000, max_seq_len=seq_max_len)
testset = ToySequenceData(n_samples=500, max_seq_len=seq_max_len)

# tf Graph input
x = tf.placeholder("float", [None, seq_max_len, 1])
y = tf.placeholder("float", [None, n_classes])
# A placeholder for indicating each sequence length
seqlen = tf.placeholder(tf.int32, [None])

# Define weights
weights = {
    'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
    'out': tf.Variable(tf.random_normal([n_classes]))
}


def dynamicRNN(x, seqlen, weights, biases):
    # Prepare data shape to match `rnn` function requirements
    # Current data input shape: (batch_size, n_steps, n_input)
    # Required shape: 'n_steps' tensors list of shape (batch_size, n_input)

    # Unstack to get a list of 'n_steps' tensors of shape (batch_size, n_input)
    x = tf.unstack(x, seq_max_len, 1)

    # Define a lstm cell with tensorflow
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden)

    # Get lstm cell output, providing 'sequence_length' will perform dynamic
    # calculation.
    outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32,
                                                sequence_length=seqlen)

    # When performing dynamic calculation, we must retrieve the last
    # dynamically computed output, i.e., if a sequence length is 10, we need
    # to retrieve the 10th output.
    # However TensorFlow doesn't support advanced indexing yet, so we build
    # a custom op that for each sample in batch size, get its length and
    # get the corresponding relevant output.

    # 'outputs' is a list of output at every timestep, we pack them in a Tensor
    # and change back dimension to [batch_size, n_step, n_input]

    # 'x' is [1, 4]
    # 'y' is [2, 5]
    # 'z' is [3, 6]
    #stack([x, y, z]) = > [[1, 4], [2, 5], [3, 6]]  # Pack along first dim.
    #stack([x, y, z], axis=1) = > [[1, 2, 3], [4, 5, 6]]
    outputs = tf.stack(outputs)  #[n_step,batch_size,n_output]
    outputs = tf.transpose(outputs, [1, 0, 2]) #[batch_size,n_steps,n_output]

    # Hack to build the indexing and retrieve the right output.
    batch_size = tf.shape(outputs)[0]
    # Start indices for each sample
    index = tf.range(0, batch_size) * seq_max_len + (seqlen - 1)
    # Indexing
    outputs = tf.gather(tf.reshape(outputs, [-1, n_hidden]), index)
    print (outputs.shape)
    exit()
    # Linear activation, using outputs computed above
    return tf.matmul(outputs, weights['out']) + biases['out']


pred = dynamicRNN(x, seqlen, weights, biases)

# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.global_variables_initializer()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    step = 1
    # Keep training until reach max iterations
    while step * batch_size < training_iters:
        batch_x, batch_y, batch_seqlen = trainset.next(batch_size)
        # Run optimization op (backprop)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                       seqlen: batch_seqlen})
        if step % display_step == 0:
            # Calculate batch accuracy
            acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y,
                                                seqlen: batch_seqlen})
            # Calculate batch loss
            loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y,
                                             seqlen: batch_seqlen})
            print("Iter " + str(step * batch_size) + ", Minibatch Loss= " + \
                  "{:.6f}".format(loss) + ", Training Accuracy= " + \
                  "{:.5f}".format(acc))
        step += 1
    print("Optimization Finished!")

    # Calculate accuracy
    test_data = testset.data
    test_label = testset.labels
    test_seqlen = testset.seqlen
    print("Testing Accuracy:", \
          sess.run(accuracy, feed_dict={x: test_data, y: test_label,
                                        seqlen: test_seqlen}))

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值