NLP_task_激活函数

本文详细介绍了深度学习中常用的激活函数,包括Sigmoid、tanh、ReLU及其改进版Leaky ReLU。讨论了它们的优缺点,如梯度消失、神经元坏死等问题,并给出了如何选择合适激活函数的建议。对于隐藏层,tanh通常优于sigmoid,而ReLU因其快速收敛和低计算复杂度成为常用选择。输出层在分类问题中常使用Sigmoid,预测问题则可能使用线性或ReLU函数。
摘要由CSDN通过智能技术生成

Activation functions

神经网络隐藏层和输出层都需要激活函数(activation function),在之前的课程中我们都默认使用Sigmoid函数 σ(x) 作为激活函数。其实,还有其它激活函数可供使用,不同的激活函数有各自的优点。下面我们就来介绍几个不同的激活函数 g(x) 。

  • sigmoid函数
    在这里插入图片描述
    优点:
    (1)便于求导的平滑函数;
    (2)能压缩数据,保证数据幅度不会有问题;
    (3)适合用于前向传播。

缺点:
(1)容易出现梯度消失(gradient vanishing)的现象:当激活函数接近饱和区时,变化太缓慢,导数接近0,根据后向传递的数学依据是微积分求导的链式法则,当前导数需要之前各层导数的乘积,几个比较小的数相乘,导数结果很接近0,从而无法完成深层网络的训练。
(2)Sigmoid的输出不是0均值(zero-centered)的:这会导致后层的神经元的输入是非0均值的信号,这会对梯度产生影响。以 f=sigmoid(wx+b)为例, 假设输入均为正数(或负数),那么对w的导数总是正数(或负数)&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值