分类算法-朴素贝叶斯算法与分类模型评估

本文介绍了如何利用朴素贝叶斯公式预测文档主题,详细阐述了拉普拉斯平滑处理零频率问题,以及在sklearn库中实现MultinomialNB分类器的过程。通过数据集划分和训练,计算模型的准确率,并探讨了fit、fit_transform在数据预处理中的作用。同时,提到了模型选择与调优,特别是交叉验证和网格搜索在参数调优中的应用。
摘要由CSDN通过智能技术生成

#利用贝叶斯公式预测类型 ,比如给一个文档,根据特征词判断文档的主题

𝑃(𝐶│𝑊)=(𝑃(𝑊│𝐶)*𝑃(𝐶))/(𝑃(𝑊))

P(A1,A2|B) = P(A1|B)P(A2|B)

各个条件相互独立,如果不独立需要使用自然语言处理

sklearn.naive_bayes.MultinomialNB

拉普拉斯平滑

如果词频列表里面有很多出现次数都为0,很可能计算结果都为零

𝑃(𝐹1│𝐶)=(𝑁𝑖+𝛼)/(𝑁+𝛼𝑚)

𝛼为指定的系数一般为1,m为训练文档中统计出的特征词个数
sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
#使用数据集
news = fetch_20newsgroups(subset=‘all’)

分配

x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)

以训练集当中的词的列表进行每篇文章重要性统计[‘a’,‘b’,‘c’,‘d’]

x_train = tf.fit_transform(x_train)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值