torch
zyr_freedom
但做好事,莫问前程!
展开
-
pytorch训练CPU占用持续增长(bug)
torch中cpu内存持续增长原创 2022-06-22 11:37:14 · 1188 阅读 · 0 评论 -
学习记录4: einops // cudnn.benchamark=true // hook
einopsimport torchfrom einops import rearrange,reduce,repeatx= torch.randn(2,3,8,8)#1 转置操作out1 = x.transpose(1,2)out2 = rearrange(x,'b c h w ->b h c w')print('verify out1 & out2 ---->:',torch.allclose(out1,out2))#2 变形out3 = x.resha.原创 2022-05-26 21:45:28 · 229 阅读 · 0 评论 -
学习记录2:pytorch中FFT
pytorch中实现根据版本不同,使用的函数也不同,最直接的区别就是旧版fft后出现的是实数,而新版出来的是复数,这里进行一个记录:原创 2022-03-16 00:15:03 · 7208 阅读 · 1 评论 -
学习记录1:pytorch——自定义卷积(sobel / gaussian_blur) // FFT
pytorch——自定义卷积(sobel / gaussian_blur) // FFT原创 2022-03-14 15:46:04 · 7036 阅读 · 0 评论 -
(二) PyTorch实现perceptual loss
另一个版本 ,但是本质时一样的:import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variablefrom math import expimport numpy as npfrom torchvision import modelsimport os,cv2device = torch.device("cuda" if torch.cuda.is_ava原创 2021-03-26 21:06:23 · 4316 阅读 · 10 评论 -
(一) PyTorch实现 VGG19 特征可视化及常用VGG进行的perceptual loss
1.VGG19本是用来进行分类的,进行可视化和用作VGG loss 自然也就是用到全连接层之前的内容,先要了解VGG19全连接层之前的结构from torchvision.models import vgg19,vgg16import torchimport torch.nn.functional as Fimport cv2import numpy as npfrom torchvision import modelsfrom torchsummary import summaryim原创 2021-03-26 20:31:21 · 6504 阅读 · 4 评论