hessian学习笔记

关键字: hessian webservice

似乎最近Hessian 很火?

昨天我用了,马上就喜欢上了他.

1- 整个jar很小,200多K,3.1版本的,当然,我下载的for java的版本.

2- 配置很简单,基本上不需要花什么经历就配置出来了

3- 功能强大,可以将soap抛开,也可以把EJB抛开,采用二进制来传递对象

4- 拥有多种语言支持,python c++ .net 甚至 flex 都可以做为client端

http://hessian.caucho.com/#Java 这里可以下载到for java的版本

任意JAVA的IDE新建一个JAVA WEB工程

将下载的.jar包引入工程中,创建一个接口,这个接口可以供客户端和服务器端使用如下:
java 代码

1. public interface IBasic {
2.
3. /**
4. * 测试字符串
5. * @return
6. */
7. public String hello();
8.
9. /**
10. * 取一辆汽车 测试对象传递
11. * @return
12. */
13. public Car getCar();
14.
15. }



当然接口中用到的Car 这个类是自己定义的包含任何属性的标准JAVABEAN;

接下来我们就开始做service端的程序了:
java 代码

1. /**
2. * Created by IntelliJ IDEA.
3. * User: tangkf
4. */
5. public class BasicService implements IBasic {
6. private String hello= "Hello, world";
7.
8. public String hello()
9. {
10. return hello;
11. }
12.
13. public Car getCar() {
14. Car car = new Car();
15. car.setColor("RED红色");
16. car.setLength("2400");
17. car.setName("HAHACHE");
18. return car;
19. }
20. }



服务器端的程序写好后,要让client能够通过http协议访问到我们的service还需要配置servlet,当然这个过程是很简单的
xml 代码

1. <servlet>
2. <servlet-name>helloservlet-name>
3. <servlet-class>com.caucho.hessian.server.HessianServletservlet-class>
4. <init-param>
5. <param-name>home-classparam-name>
6. <param-value>study.hessian.BasicServiceparam-value>
7. init-param>
8. <init-param>
9. <param-name>home-apiparam-name>
10. <param-value>study.hessian.IBasicparam-value>
11. init-param>
12. servlet>
13.
14. <servlet-mapping>
15. <servlet-name>helloservlet-name>
16. <url-pattern>/hellourl-pattern>
17. servlet-mapping>



只需要将上面的代码加入到你的WEB.XML文件中,当然包路径是你自己的路径而已.

这时服务器段的工作就已经全部完成了.



接下来我们在做client端的工作,client需要用到IBasic 这个接口,还需要用到 Car 这个类

可以做一个简单的测试:
java 代码

1. public class BasicClient {
2. public static void main(String []args)
3. throws Exception
4. {
5. String url = "http://127.0.0.1:8099/common/hello";
6. HessianProxyFactory factory = new HessianProxyFactory();
7. Basic basic = (Basic) factory.create(Basic.class, url);
8. Car car = basic.getCar();
9. System.out.println("Hello: " + basic.hello());
10. System.out.println("Hello: " + car.toString());
11. }
12.
13.
14. }



大功告成,启动我们的WEB服务器,然后在启动这个client的程序,是不是发现屏幕上输出了你想看到的结果!要是抛异常了怎么办?

不要急,检查下包路径,.xml文件的配置,没有什么神奇的地方.

我们离开了WSDL,离开了WSDD,也不需要AXIS,不需要什么W3C的大篇标准.

Hessian 简单就是美,实用就是强,好用就是王道!!!哈哈哈哈~~~
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、品质保证:项目代码均经过严格测试,确保功能稳定且运行ok。您可以放心下载并立即投入使用,若遇到任何问题,随时欢迎您的反馈与交流。 2、适用广泛:无论您是计算机相关专业(如计算机科学、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业老师,还是企业员工,都适用。 3、多用途价值:该项目不仅具有很高的学习借鉴价值,对于初学者来说,是入门进阶的绝佳选择;当然也可以直接用于 毕业设计、课程设计、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,那该项目代码更是您发挥创意、实现新功能的起点。可以基于此代码进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎交流学习,欢迎借鉴引用,共同探索编程的无穷魅力! 基于人工智能深度学习技术实现肿瘤区域识别诊断系统python源码带后端+项目说明.zip 环境 - Python : **PyTorch 1.10.0 , OpenCV , Flask , TensorRT 8.5.1.7** - Vue , Vue CLI - Node : **axios , ElementUI , ECharts** - Chrome(内核版本60以上) ## 训练 训练的数据来源于国外的数据集。因数据和精力有限只训练了针对直肠肿瘤模型。首先对CT文件进行整理,使用SimpleITK读取CT文件,读取肿瘤的掩膜文件并映射到肿瘤CT图像来获取肿瘤区域,然后进行数据的归一化,预处理后制作训练和测试的数据集。 使用**PyTorch框架**编写。使用**交叉熵损失函数**,**Adam优化器**。 网络结构采用**U-Net**,**U-Net**是基于FCN的一种语义分割网络,适用于做医学图像的分割。结构如下,实际使用稍有改动。 后端 整个系统采取前后分离的方案,确保足够轻量,低耦合。后端采用Python的Flask库,能与AI框架更好的结合,使得系统能更高内聚。 后端运行流程如下 目录管理: | 目录 | 功能 | | ---- | ---- | | uploads | 直接上传目录 | | tmp/ct | dcm文件副本目录 | | tmp/image| dcm读取转换为png目录| | tmp/mask | 预测结果肿瘤掩膜目录| | tmp/draw | 勾画肿瘤后处理结果目录| 系统以图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断。有完整的**模型构建、后端架设和前端访问**功能。 医生只需通过web上传ct图像文件,后台就会使用训练好的模型进行肿瘤区域的分割,然后将勾画好肿瘤区域的图像返回,还有肿瘤区域的一些特征(如面积、周长、强度等),并且提供前几次诊断的特征数据并绘制成图表进行对比来辅助医生诊断。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值