LeetCode题解(python)
63. 不同路径 II
题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
**说明:**m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
解题心得
本题是在昨天上一题的基础上进行的改进,增加障碍。
主要思路不变——动态规划
主要子结构不变——
rel[i][j] = rel[i-1][j]+rel[i][j-1]
需要变化的部分是子结构的一部分:
- 边缘的位置,如果有障碍,那么该位置方法数为0,且此位置后的边缘位置方法数均为0;如果没有障碍,像上题一样,方法数为1.
- 其他位置,如果有障碍,那么该位置方法数为0
时间复杂度: O ( m × n ) O(m \times n) O(m×n)
执行用时 : 56 ms, 在Unique Paths II的Python3提交中击败了76.96% 的用户
内存消耗 : 13.1 MB, 在Unique Paths II的Python3提交中击败了84.85% 的用户
解题代码
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
rel =[[0 for _ in range(n)] for _ in range(m)]
#print(rel)
if obstacleGrid[0][0] == 1 or obstacleGrid[m-1][n-1] == 1:
return 0
for i in range(m):
if obstacleGrid[i][0] == 0:
rel[i][0] = 1
else:
break
for i in range(n):
if obstacleGrid[0][i] == 0:
rel[0][i] = 1
else:
break
for i in range(1,m):
for j in range(1,n):
if obstacleGrid[i][j] == 1:
rel[i][j] = 0
else:
rel[i][j] = rel[i-1][j]+rel[i][j-1]
return rel[m-1][n-1]