一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2
条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
代码思路:
这道题跟上一道不同途径I类似,只是多了个障碍,那么有障碍的格子走法是0,其余的按照第一道的思路
代码实现:
class Solution(object):
def diffPathII(self, nums):
row_count = len(nums)
col_count = len(nums[0])
#标志位用来判断是否有障碍物
flag = True
#画一个地图
pathmap = [[0 for i in range(col_count)] for j in range(row_count)]
#先计算第一行和第一列的走法
#第一行
for i in range(col_count):
if nums[0][i] == 1:
#只要有一个有障碍,它后面的格子走法都为0
flag = False
if flag:
pathmap[0][i] = 1
else:
pathmap[0][i] = 0
#第一列
flag = True
for j in range(row_count):
if nums[j][0] == 1:
flag = False
if flag:
pathmap[j][0] = 1
else:
pathmap[j][0] = 0
#计算其余走法
flag = True
for i in range(1,row_count):
for j in range(1,col_count):
if nums[i][j] == 1:
flag = False
if flag:
pathmap[i][j] = pathmap[i-1][j] + pathmap[i][j-1]
else:
pathmap[i][j] = 0
flag = True
print(pathmap)
return pathmap[-1][-1]