中国剩余定理

m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn是两两互质的整数, m = ∏ i = 1 n m i , M i = m / m i , t i m=\prod_{i=1}^nm_i,M_i=m/m_i,t_i m=i=1nmi,Mi=m/mi,ti是线性同余方程 M i t i ≡ 1 ( mod ⁡ m i ) M_it_i\equiv1(\operatorname{mod} m_i) Miti1(modmi)的一个解。对于任意的n个整数 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an,方程组
{ x ≡ a 1 ( mod ⁡ m 1 ) x ≡ a 2 ( mod ⁡ m 2 ) ⋮ x ≡ a n ( mod ⁡ m n ) \begin{cases}x\equiv a_1(\operatorname{mod} m_1)\\x\equiv a_2(\operatorname{mod }m_2)\\\vdots\\x\equiv a_n(\operatorname{mod}m_n)\end{cases} xa1(modm1)xa2(modm2)xan(modmn)

有整数解,解为 x = ∑ i = 1 n a i M i t i x=\sum_{i=1}^{n}a_iM_it_i x=i=1naiMiti

证明:

因为 M i = m / m i M_i=m/m_i Mi=m/mi是除 m i m_i mi之外所有模数的倍数,所以 ∀ k ≠ i , a i M i t i ≡ 0 ( mod ⁡ m k ) \forall k \ne i,a_iM_it_i\equiv 0(\operatorname{mod} m_k) k̸=i,aiMiti0(modmk)。又因为 a i M i t i ≡ a i ( mod ⁡ m i ) a_iM_it_i\equiv a_i(\operatorname{mod}m_i) aiMitiai(modmi),所以代入 x = ∑ i = 1 n a i M i t i x=\sum_{i=1}^na_iM_it_i x=i=1naiMiti,所以原方程组成立、

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值