向量的运算

向量

有大小,有方向的量,记为 a ⃗ \vec{a} a

基本运算

向量的加法

首尾相连法则(当然还有其他名字:平行四边形法则、三角形法则)
在这里插入图片描述
如图 a ⃗ + b ⃗ \vec{a}+\vec{b} a +b 就相当于将 b ⃗ \vec{b} b 的起点平移到 a ⃗ \vec{a} a 的终点( a ⃗ 、 b ⃗ \vec{a}、\vec{b} a b 以原点为起点),得到 b ′ ⃗ \vec{b'} b ,就如下图:

在这里插入图片描述
a ⃗ + b ⃗ = c ⃗ \vec{a}+\vec{b}=\vec{c} a +b =c ,因为它们作用效果一样,这就是首尾相连法则,即由 a ⃗ \vec{a} a 的起点,到 b ′ ⃗ \vec{b'} b 的终点。

向量的积

数量积

即一个向量与一个标量相乘,即数乘。
如下图:
在这里插入图片描述

代数表示为: λ a ⃗ \lambda\vec{a} λa

在这里插入图片描述


内积

两个向量点乘,代数表示为: a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ c o s θ \vec{a}\cdot \vec{b}=\mid\vec{a}\mid\mid\vec{b}\mid cos\theta a b =a b cosθ

意义为: a ⃗ \vec{a} a 的大小与 b ⃗ \vec{b} b a ⃗ \vec{a} a 上的投影的大小的乘积

乘积为标量

a ⃗ \vec{a} a ( x 1 , y 1 ) (x_1,y_1) (x1,y1), b ⃗ \vec{b} b ( x 2 , y 2 ) (x_2,y_2) (x2,y2)

a ⃗ ⋅ b ⃗ = x 1 ∗ x 2 + y 1 ∗ y 2 \vec{a}\cdot \vec{b}=x_1*x_2+y_1*y_2 a b =x1x2+y1y2

具体证明略,详见 60 60 60课时学高中数学。


外积

两个向量叉乘为外积,外积是一个向量。

a ⃗ × b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ s i n θ = x 1 ∗ y 2 − x 2 ∗ y 1 \vec{a}\times\vec{b}=\mid\vec{a}\mid\mid\vec{b}\mid sin\theta=x_1*y_2-x_2*y_1 a ×b =a b sinθ=x1y2x2y1

其中 θ \theta θ表示 a ⃗ \vec{a} a 沿着逆时针方向旋转到 b ⃗ \vec{b} b 的度数。

这里其实有点问题,外积是一个向量,但运算结果是一个标量(我解决不了),但是在计算几何中,用到的往往是关于与向量类似的运算,所以理解就好了。在做题中,我们仅仅只是用(伪外积)去求一个线段到另外一个线段,是如何旋转(度数严格小于 180 ° 180° 180°),从而确定线段是顺时针还是逆时针旋转,或者用来去掉重复的面积的。

这点应该要清楚理解。

而不是

∣ a ⃗ × b ⃗ ∣ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ s i n θ = x 1 ∗ y 2 − x 2 ∗ y 1 \mid\vec{a}\times\vec{b}\mid=\mid\vec{a}\mid\mid\vec{b}\mid sin\theta=x_1*y_2-x_2*y_1 a ×b =a b sinθ=x1y2x2y1

其中 θ \theta θ表示 a ⃗ \vec{a} a b ⃗ \vec{b} b 的夹角( 0 ≤ θ ≤ 180 ° 0\le\theta\le 180° 0θ180°)度数。

证明不知道。

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值