题面描述
思路
经过观察,就是一道多重集的组合数的模板题
C
N
+
M
−
1
N
−
1
−
∑
i
=
1
N
C
N
+
M
−
n
i
−
2
+
∑
1
≤
i
<
j
≤
N
C
N
+
M
−
n
i
−
n
j
−
3
N
−
1
−
⋯
+
(
−
1
)
N
C
N
+
M
−
∑
i
=
1
N
n
i
−
(
N
+
1
)
N
C_{N+M-1}^{N-1}-\sum_{i=1}^NC_{N+M-n_i-2}+\sum_{1\le i<j\le N}C^{N-1}_{N+M-n_i-n_j-3}-\cdots+(-1)^NC_{N+M-\sum_{i=1}^{N}n_i-(N+1)}^N
CN+M−1N−1−i=1∑NCN+M−ni−2+1≤i<j≤N∑CN+M−ni−nj−3N−1−⋯+(−1)NCN+M−∑i=1Nni−(N+1)N
然后直接跑递归就好了。
计算 C y x C_y^x Cyx时,可运用 C y x = P y x / ( x − 1 ) ! C_y^x=P_y^x/(x-1)! Cyx=Pyx/(x−1)!的性质,快速求解。
注意,要先预处理 N − 1 N-1 N−1的乘法逆元。
AC code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define ll long long
#define gc getchar()
using namespace std;
const int N=26;
const ll mod=1e9+7;
ll inv,a[N];
inline void qr(ll &x)
{
x=0;ll f=1;char c=gc;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=gc;}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=gc;}
x*=f;
}
void qw(ll x)
{
if(x/10)qw(x/10);
putchar(x%10+48);
}
inline ll pow_mod(ll a,ll b)
{
ll ans=1;a%=mod;
while(b)
{
if(b&1)ans=ans*a%mod;
b>>=1;a=a*a%mod;
}
return ans;
}
inline ll C(ll y,int x)//C^x_y
{
if(y<0||x<0||y<x)return 0;
y%=mod;if(x==0||y==0)return 1;
ll ans=1;
for(int i=0;i<x;i++)
ans=ans*(y-i)%mod;
ans=ans*inv%mod;
return ans;
}
ll ans;ll n,m;
void dfs(int i,ll x,int p)
{
for(;i<=n;i++)
{
ll tx=x+a[i];
if(p&1)
ans=(ans-C(n+m-tx-p,n-1))%mod;
else
ans=(ans+C(n+m-tx-p,n-1))%mod;
dfs(i+1,tx,p+1);
}
}
int main()
{
inv=1;
qr(n),qr(m);
for(int i=2;i<n;i++)inv=inv*i%mod;
inv=pow_mod(inv,mod-2);
for(int i=1;i<=n;i++)qr(a[i]);
ans=C(n+m-1,n-1);
dfs(1,1,1);
if(ans<0)ans+=mod;
qw(ans);puts("");
return 0;
}