欢迎大家访问我的老师的OJ———caioj.cn
题面描述
思路
这里其实就运用了向量的外积的大小为平行四边形的面积。
注意叉乘(不取模)可能为一个负数,
正是因为这个性质,我们能直接得到
∣ a n s ∣ = ∣ O A ⃗ × O B ⃗ + ⋯ 2 ∣ \mid ans\mid=\mid \frac{\vec{OA}\times\vec{OB}+\cdots}{2}\mid ∣ans∣=∣2OA×OB+⋯∣
但是有一点要修改的,
我们以 a 1 a_1 a1为原点,所以我们 m u l ( a 1 , a 2 , a 1 ) mul(a_1,a_2,a_1) mul(a1,a2,a1)并不用计算,从 3 3 3开始计算。
而且博文中描述最终面积仍需要除以2才为答案。
AC code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
using namespace std;
const int N=1010;
struct node{double x,y;}a[N];
double mul(node p1,node p2,node p0)
{
double x1=p1.x-p0.x,x2=p2.x-p0.x;
double y1=p1.y-p0.y,y2=p2.y-p0.y;
return x1*y2-x2*y1;
}
int main()
{
double ans=0;
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%lf%lf",&a[i].x,&a[i].y);
for(int i=3;i<=n;i++)
{
ans+=mul(a[i-1],a[i],a[1]);
}
if(ans<0)ans=-ans;
printf("%.4lf\n",ans/2.0);
return 0;
}