[APIO2010]特别行动队

题面描述

传送门

思路

状态转移方程

应该很好想:

s s s为战斗力前缀和,那么有

F i = max ⁡ ( F j + a ∗ ( s i − s j ) 2 + b ∗ ( s i − s j ) + c ) F_i=\max(F_j+a*(s_i-s_j)^2+b*(s_i-s_j)+c) Fi=max(Fj+a(sisj)2+b(sisj)+c)

决策单调性

设有
F k + a ∗ ( s i − s k ) 2 + b ∗ ( s i − s k ) + c ≥ F j + a ∗ ( s i − s j ) 2 + b ∗ ( s i − s j ) + c F_k+a*(s_i-s_k)^2+b*(s_i-s_k)+c\ge F_j+a*(s_i-s_j)^2+b*(s_i-s_j)+c Fk+a(sisk)2+b(sisk)+cFj+a(sisj)2+b(sisj)+c

化简为

F k − 2 ∗ a ∗ s i ∗ s k + a ∗ s k 2 − b ∗ s k ≥ F j − 2 ∗ a ∗ s i ∗ s j + a ∗ s j 2 − b ∗ s j F_k-2*a*s_i*s_k+a*{s_k}^2-b*s_k\ge F_j-2*a*s_i*s_j+a*{s_j}^2-b*s_j Fk2asisk+ask2bskFj2asisj+asj2bsj

对于未来状态 t t t,证明:

F k + a ∗ ( s t − s k ) 2 + b ∗ ( s t − s k ) + c ≥ F j + a ∗ ( s t − s j ) 2 + b ∗ ( s t − s j ) + c F_k+a*(s_t-s_k)^2+b*(s_t-s_k)+c\ge F_j+a*(s_t-s_j)^2+b*(s_t-s_j)+c Fk+a(stsk)2+b(stsk)+cFj+a(stsj)2+b(stsj)+c

化简为

F k − 2 ∗ a ∗ s t ∗ s k + a ∗ s k 2 − b ∗ s k ≥ F j − 2 ∗ a ∗ s t ∗ s j + a ∗ s j 2 − b ∗ s j F_k-2*a*s_t*s_k+a*{s_k}^2-b*s_k\ge F_j-2*a*s_t*s_j+a*{s_j}^2-b*s_j Fk2astsk+ask2bskFj2astsj+asj2bsj

由于 s t = s i + v a l s_t=s_i+val st=si+val,则

F k − 2 ∗ a ∗ ( s i + v a l ) ∗ s k + a ∗ s k 2 − b ∗ s k ≥ F j − 2 ∗ a ∗ ( s i + v a l ) ∗ s j + a ∗ s j 2 − b ∗ s j F_k-2*a*(s_i+val)*s_k+a*{s_k}^2-b*s_k\ge F_j-2*a*(s_i+val)*s_j+a*{s_j}^2-b*s_j Fk2a(si+val)sk+ask2bskFj2a(si+val)sj+asj2bsj

根据

F k − 2 ∗ a ∗ s i ∗ s k + a ∗ s k 2 − b ∗ s k ≥ F j − 2 ∗ a ∗ s i ∗ s j + a ∗ s j 2 − b ∗ s j F_k-2*a*s_i*s_k+a*{s_k}^2-b*s_k\ge F_j-2*a*s_i*s_j+a*{s_j}^2-b*s_j Fk2asisk+ask2bskFj2asisj+asj2bsj

只需要证明

− 2 ∗ a ∗ v a l ∗ s k ≥ − 2 ∗ a ∗ v a l ∗ s j -2*a*val*s_k\ge-2*a*val*s_j 2avalsk2avalsj

由于 a &lt; 0 , v a l &gt; 0 , s k &gt; s j a&lt;0,val&gt;0,s_k&gt;s_j a<0,val>0,sk>sj,可知:

v a l ∗ s k ≥ v a l ∗ s j val*s_k\ge val*s_j valskvalsj

证毕。

踢队头

根据上文,

F k − 2 ∗ a ∗ s i ∗ s k + a ∗ s k 2 − b ∗ s k ≥ F j − 2 ∗ a ∗ s i ∗ s j + a ∗ s j 2 − b ∗ s j ( k &gt; j ) F_k-2*a*s_i*s_k+a*{s_k}^2-b*s_k\ge F_j-2*a*s_i*s_j+a*{s_j}^2-b*s_j(k&gt;j) Fk2asisk+ask2bskFj2asisj+asj2bsj(k>j)

F j − F k + a ∗ s j 2 − a ∗ s k 2 − b ∗ s j + b ∗ s k ≤ 2 ∗ a ∗ s i ∗ s j − 2 ∗ a ∗ s i ∗ s k F_j-F_k+a*{s_j}^2-a*{s_k}^2-b*s_j+b*s_k\le 2*a*s_i*s_j-2*a*s_i*s_k FjFk+asj2ask2bsj+bsk2asisj2asisk

( F j + a ∗ s j 2 − b ∗ s j ) − ( F k + a ∗ s k 2 − b ∗ s k ) ≤ 2 ∗ a ∗ s i ∗ ( s j − s k ) (F_j+a*{s_j}^2-b*s_j)-(F_k+a*{s_k}^2-b*s_k)\le 2*a*s_i*(s_j-s_k) (Fj+asj2bsj)(Fk+ask2bsk)2asi(sjsk)

由于 s j − s k &lt; 0 , a &lt; 0 s_j-s_k&lt;0,a&lt;0 sjsk<0,a<0,所以

c a l c ( j , k ) = ( F j + a ∗ s j 2 − b ∗ s j ) − ( F k + a ∗ s k 2 − b ∗ s k ) a ∗ ( s j − s k ) ≤ 2 ∗ s i calc(j,k)=\frac{(F_j+a*{s_j}^2-b*s_j)-(F_k+a*{s_k}^2-b*s_k)}{a*(s_j-s_k)}\le2*s_i calc(j,k)=a(sjsk)(Fj+asj2bsj)(Fk+ask2bsk)2si

c a l c ( j , k ) ≤ 2 ∗ s i calc(j,k)\le 2*s_i calc(j,k)2si时, k k k优于 j j j.

因此当 c a l c ( q h e a d , q h e a d + 1 ) ≤ 2 ∗ s i calc(q_{head},q_{head+1})\le 2*s_i calc(qhead,qhead+1)2si

h e a d + 1 head+1 head+1优于 h e a d head head

由于 s i s_i si i i i增大而增大,那么 c a l c ( q h e a d , q h e a d + 1 ) calc(q_{head},q_{head+1}) calc(qhead,qhead+1) h e a d head head增大而增大,才符合 h e a d head head为最优解,因此斜率是不断递增的。

踢队尾

根据斜率是不断递增的,仅当

c a l c ( q t a i l , i ) ≥ c a l c ( q t a i l − 1 , q t a i l ) calc(q_{tail},i)\ge calc(q_{tail-1},q_{tail}) calc(qtail,i)calc(qtail1,qtail)

斜率才满足不断递增。

故当

c a l c ( q t a i l , i ) ≤ c a l c ( q t a i l − 1 , q t a i l ) calc(q_{tail},i)\le calc(q_{tail-1},q_{tail}) calc(qtail,i)calc(qtail1,qtail)

删去队尾。

AC code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define gc getchar()
#define ll long long
using namespace std;
const int N=1e6+10;
inline void qr(ll &x)
{
	x=0;int f=1;char c=gc;
	while(c<'0'||c>'9'){if(c=='-')f=-1;c=gc;}
	while(c>='0'&&c<='9'){x=x*10+(c^48);c=gc;}
	x*=f;
}
inline void qw(ll x)
{
	if(x<0)x=-x,putchar('-');
	if(x/10)qw(x/10);
	putchar(x%10+48);
}
ll s[N],a,b,c,f[N];
int q[N],l,r;
inline double calc(int j,int k)
{
	return ((f[j]+a*s[j]*s[j]-b*s[j])-(f[k]+a*s[k]*s[k]-b*s[k]))/(double)(a*(s[j]-s[k]));
}
int main()
{
	int n;scanf("%d",&n);
	qr(a),qr(b),qr(c);
	for(int i=1;i<=n;i++)qr(s[i]),s[i]+=s[i-1];
	l=1;r=1;q[1]=0;
	for(int i=1;i<=n;i++)
	{
		while(l<r&&calc(q[l],q[l+1])<=2.0*s[i])++l;
		f[i]=f[q[l]]+a*(s[i]-s[q[l]])*(s[i]-s[q[l]])+b*(s[i]-s[q[l]])+c;
		while(l<r&&calc(q[r],i)<=calc(q[r-1],q[r]))--r;
		q[++r]=i;
	}
	qw(f[n]);puts("");
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值