前置知识
权值线段树
权值线段树之所以会带上“权值”二字,是因为它是记录权值的线段树。因此需要用到离散化操作来处理a[1-n]。记录权值指的是,每个点上存的是区间内的数字出现的总次数。
因此,叶子节点存的就是单个值的次数咯。
学完这个之后呢,我们就差不多理解了权值线段树了,并没有什么卵用。
离散化就不讲了。
初次尝试
什么?你要我求区间第k大值,那好,我每插入一个值,我就建多一颗线段树。
时间,空间受不鸟,失败告终了。
第二次尝试(主席树)
从前有个叫hjt的人,在集训队时发明了这种数据结构,像可持久化Trie树一样,它不用每次都重新建树,优化了空间,优化了时间。
看图吧。
2 2 2号节点是当前要插进去的下标,辣么, r o o t [ 1 ] root[1] root[1]这棵线段树呢,就比 r o o t [ 2 ] root[2] root[2]这颗线段树少了一个二号节点,抽象来看呢,也就是多了一条2到root的路径出来,增加的只有这条路径,因此,可以选择继承前一状态之后,再进行根据要求找出路径,增点。这样做可以重复利用节点编号,节省空间。
至于询问操作呢。
由于我们已经记录了所有节点的线段树状态。
辣么我们可以根据权值线段树的定义以及主席树维护的是什么。
区间 [ 1 , y ] [1,y] [1,y]的所有点已经被 r o o t [ y ] root[y] root[y]所在这颗统计过了,同理,区间 [ 1 , x − 1 ] [1,x-1] [1,x−1]也如此。
仔细回想一下,我们是可以求到每个叶子节点出现在 [ x , y ] [x,y] [x,y]的次数的,问题也就迎刃而解了。
来份代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define gc getchar()
using namespace std;
const int N=1e5+10;
inline void qr(int &x)
{
x=0;char c=gc;int f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=gc;}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=gc;}
x*=f;
}
void qw(int x)
{
if(x<0)x=-x,putchar('-');
if(x/10)qw(x/10);
putchar(x%10+48);
}
struct HJTSeg{int l,r,sum;}tr[N*25];int cnt;int root[N];
int b[N],a[N],len,n,m;
void disc()
{
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)
if(i==1||a[i]!=a[i-1])a[++len]=a[i];
}
int low_bound(int pos)//找出下标
{
int l=1,r=len;
while(l<r)
{
int mid=(l+r)>>1;
if(a[mid]<pos)l=mid+1;
else r=mid;
}
return l;
}
void update(int l,int r,int &x,int y,int pos)
{
tr[++cnt]=tr[y];tr[cnt].sum++;x=cnt;//继承状态
if(l==r)return ;//找到位置。
int mid=(l+r)>>1;
if(pos<=mid)update(l,mid,tr[x].l,tr[y].l,pos);//找路径
else update(mid+1,r,tr[x].r,tr[y].r,pos);
}
int query(int l,int r,int x,int y,int k)
{
if(l==r)return l;
int mid=(l+r)>>1;
int sum=tr[tr[x].l].sum-tr[tr[y].l].sum;//抽象看就是tr[x].l所管辖的叶子节点sum的和,也就是[1,x]中离散化前的叶子节点出现的数量。
if(k<=sum)return query(l,mid,tr[x].l,tr[y].l,k);
else return query(mid+1,r,tr[x].r,tr[y].r,k-sum);//这些操作都很常规了。
}
int main()
{
qr(n),qr(m);cnt=0;
for(int i=1;i<=n;i++)qr(b[i]),a[i]=b[i];
disc();//离散化
for(int i=1;i<=n;i++)update(1,len,root[i],root[i-1],low_bound(b[i]));//更新时也是下标
for(int i=1,x,y,k;i<=m;i++)
{
qr(x),qr(y),qr(k);
qw(a[query(1,len,root[y],root[x-1],k)]);puts("");//照blog所讲。
}
return 0;
}