主席树学习笔记

前置知识

权值线段树

在这里插入图片描述

权值线段树之所以会带上“权值”二字,是因为它是记录权值的线段树。因此需要用到离散化操作来处理a[1-n]。记录权值指的是,每个点上存的是区间内的数字出现的总次数。

因此,叶子节点存的就是单个值的次数咯。

学完这个之后呢,我们就差不多理解了权值线段树了,并没有什么卵用

离散化就不讲了。

初次尝试

什么?你要我求区间第k大值,那好,我每插入一个值,我就建多一颗线段树。

在这里插入图片描述

时间,空间受不鸟,失败告终了。

第二次尝试(主席树)

从前有个叫hjt的人,在集训队时发明了这种数据结构,像可持久化Trie树一样,它不用每次都重新建树,优化了空间,优化了时间。

看图吧。

在这里插入图片描述

2 2 2号节点是当前要插进去的下标,辣么, r o o t [ 1 ] root[1] root[1]这棵线段树呢,就比 r o o t [ 2 ] root[2] root[2]这颗线段树少了一个二号节点,抽象来看呢,也就是多了一条2到root的路径出来,增加的只有这条路径,因此,可以选择继承前一状态之后,再进行根据要求找出路径,增点。这样做可以重复利用节点编号,节省空间。

至于询问操作呢。

由于我们已经记录了所有节点的线段树状态。

辣么我们可以根据权值线段树的定义以及主席树维护的是什么。

区间 [ 1 , y ] [1,y] [1,y]的所有点已经被 r o o t [ y ] root[y] root[y]所在这颗统计过了,同理,区间 [ 1 , x − 1 ] [1,x-1] [1,x1]也如此。

仔细回想一下,我们是可以求到每个叶子节点出现在 [ x , y ] [x,y] [x,y]的次数的,问题也就迎刃而解了。

来份代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define gc getchar()
using namespace std;
const int N=1e5+10;
inline void qr(int &x)
{
	x=0;char c=gc;int f=1;
	while(c<'0'||c>'9'){if(c=='-')f=-1;c=gc;}
	while(c>='0'&&c<='9'){x=x*10+(c^48);c=gc;}
	x*=f;
}
void qw(int x)
{
	if(x<0)x=-x,putchar('-');
	if(x/10)qw(x/10);
	putchar(x%10+48);
}
struct HJTSeg{int l,r,sum;}tr[N*25];int cnt;int root[N];
int b[N],a[N],len,n,m;
void disc()
{
	sort(a+1,a+n+1);
	for(int i=1;i<=n;i++)
		if(i==1||a[i]!=a[i-1])a[++len]=a[i];
}
int low_bound(int pos)//找出下标 
{
	int l=1,r=len;
	while(l<r)
	{
		int mid=(l+r)>>1;
		if(a[mid]<pos)l=mid+1;
		else r=mid;
	}
	return l;
}
void update(int l,int r,int &x,int y,int pos)
{
	tr[++cnt]=tr[y];tr[cnt].sum++;x=cnt;//继承状态 
	if(l==r)return ;//找到位置。 
	int mid=(l+r)>>1;
	if(pos<=mid)update(l,mid,tr[x].l,tr[y].l,pos);//找路径 
	else update(mid+1,r,tr[x].r,tr[y].r,pos);
}
int query(int l,int r,int x,int y,int k)
{
	if(l==r)return l;
	int mid=(l+r)>>1;
	int sum=tr[tr[x].l].sum-tr[tr[y].l].sum;//抽象看就是tr[x].l所管辖的叶子节点sum的和,也就是[1,x]中离散化前的叶子节点出现的数量。 
	if(k<=sum)return query(l,mid,tr[x].l,tr[y].l,k);
	else return query(mid+1,r,tr[x].r,tr[y].r,k-sum);//这些操作都很常规了。 
}
int main()
{
	qr(n),qr(m);cnt=0;
	for(int i=1;i<=n;i++)qr(b[i]),a[i]=b[i];
	disc();//离散化 
	for(int i=1;i<=n;i++)update(1,len,root[i],root[i-1],low_bound(b[i]));//更新时也是下标 
	for(int i=1,x,y,k;i<=m;i++)
	{
		qr(x),qr(y),qr(k);
		qw(a[query(1,len,root[y],root[x-1],k)]);puts("");//照blog所讲。 
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值