数据结构与算法-----复杂度分析

复杂度分析

为什么需要做复杂度分析?

首先,我们要知道,数据结构和算法要解决的问题是,即如何代码运行得又快又省存储空间,执行效率是算法的一个非常重要的考量指标。

其实现在的工具这么完善,我们大可以把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还要做时间、空间复杂度分析呢?

这种方法是正确的,叫做事后统计法,当同时这种方法存在一些局限:

  1. 测试结果非常依赖测试环境
    测试环境中硬件的不同会对测试结果有很大的影响。就像你用i3处理器和i7处理器运行同一个代码,执行速度完全不是一个等级。

  2. 测试结果受数据规模的影响很大
    当我们使用排序算法时,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。除此之外,如果测试数据规模太小,测试结果可能无法真实地反应算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快。

所以我们才需要一种不用具体的数据来测试,就可以粗略估计算法的执行效率的方法,那就是今天的主题:时间、空间复杂度分析方法

大O复杂度表示法

所有代码的执行时间 T(n) 与每行代码的执行次数成正比
T ( n ) = O ( f ( n ) ) T(n) = O(f(n)) T(n)=O(f(n))

  • T(n)——代码执行时间
  • n——数据规模大小
  • f(n)——每行代码执行次数的总和
  • O——表示T(n) 与 f(n) 表达式成正比

大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度
低阶、常量、系数都不左右增长趋势,所以可以忽略

如何分析一段代码的时间复杂度

  1. 只关注循环执行次数最多的一段diamagnetic
  2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
  3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

复杂度量级

在这里插入图片描述
我们可以粗略地分为两类,多项式量级非多项式量级。其中,非多项式量级只有两个:O(2n) 和 O(n!)。我们把时间复杂度为非多项式量级的算法问题叫作 NP(Non-Deterministic Polynomial,非确定多项式)问题。 数据规模越大,非多项式量级算法的执行时间飙升,非常低效。

1. O(1)
一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

2. O(logn)、O(nlogn)

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

第三行代码是循环执行次数最多的,所以分析这一句,可以看到每循环一次就乘以2,这是个等比数列在这里插入图片描述
所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2 x 2^x 2x=n 求解 x 这个问题我们想高中应该就学过了。 x = l o g 2 n x=log_2n x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。
对数之间是可以互相转换的,log3n 就等于 l o g 3 2 log_32 log32 * l o g 2 n log_2n log2n,所以 O ( l o g 3 n ) = O ( C ∗ l o g 2 n ) O(log_3n) = O(C * log_2n) O(log3n)=O(Clog2n),其中 C = l o g 3 2 C=log_32 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

3. O(m+n)、O(m*n)
关于这两个,代码的复杂度由两个数据的规模来决定

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

我们无法事先估计m和n谁的量级大,所以就是O(m+n)、O(m*n)

空间复杂度分析

空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。
我们常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。

常见复杂度的增长对比图

在这里插入图片描述

最好和最坏的时间复杂度

// n 表示数组 array 的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
       pos = i;
       break;
    }
  }
  return pos;
}

上面这段代码,要查找的变量 x 可能出现在数组的任意位置。
如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。所以,不同的情况下,这段代码的时间复杂度是不一样的。
第一种情况就是最好情况时间复杂度第二种是最坏情况时间复杂度

平均情况时间复杂度

为了更好的平均情况下的复杂度,所以提出了平均时间复杂度

要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值。
12324
让我来解释一下上面这条公式,因为我们要查找x,所以当x在第一个位置,就是比对1次,在第二个位置就是比对2次,以此类推,不在数组内,也需要比对n次,最后除以所有情况的总和,就是平均比对元素个数。

这种情况下,我们确定为O(n),但是这里还有一个出现的概率需要考虑,我们知道,要查找的变量 x,要么在数组里要么就不在数组里。这两种情况对应的概率统计起来很麻烦,为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。

因此,前面的推导过程中存在的最大问题就是,没有将各种情况发生的概率考虑进去。如果我们把每种情况发生的概率也考虑进去:
在这里插入图片描述
这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度。最后答案仍然是O(n)

均摊时间复杂度和摊还分析

平均复杂度只在某些特殊情况下才会用到,而均摊时间复杂度应用的场景比它更加特殊、更加有限。均摊时间复杂度是平均复杂度的一种特殊情况,当出现O(1)的次数远远大于O(n)出现的次数,那么时间复杂度就是O(1)

 // array 表示一个长度为 n 的数组
 // 代码中的 array.length 就等于 n
 int[] array = new int[n];
 int count = 0;
 
 void insert(int val) {
    if (count == array.length) {
       int sum = 0;
       for (int i = 0; i < array.length; ++i) {
          sum = sum + array[i];
       }
       array[0] = sum;
       count = 1;
    }

    array[count] = val;
    ++count;
 }

这段代码实现了一个往数组中插入数据的功能。当数组满了之后,也就是代码中的 count == array.length 时,我们用 for 循环遍历数组求和,并清空数组,将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。

最好的情况是,数组有空闲空间,可以直接插入数据到数组下标为 count 的位置,时间复杂度为O(1),最坏的情况下,数组中没有空闲空间了,我们需要先做一次数组的遍历求和,然后再将数据插入,所以最坏情况时间复杂度为 O(n)。

一共n+1种情况发生,并且概率一样,都是1/(n+1),所以平均复杂度为:
在这里插入图片描述
但是其实并不需要这样计算,因为这是insert函数是个特别的例子:比较find函数和insert函数的区别,

  1. find() 函数在极端情况下,复杂度才为 O(1)。但 insert() 在大部分情况下,时间复杂度都为 O(1)。只有个别情况下,复杂度才比较高,为 O(n)。
  2. 对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,出现的频率是非常有规律的,而且有一定的前后时序关系,一般都是一个 O(n) 插入之后,紧跟着 n-1 个 O(1) 的插入操作,循环往复。

所以针对这种特殊场景,我们可以引用摊还分析法,即每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。

摊还分析法应该用在什么场景?

对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。

课后练习题:分析add()函数

// 全局变量,大小为 10 的数组 array,长度 len,下标 i。
int array[] = new int[10]; 
int len = 10;
int i = 0;

// 往数组中添加一个元素
void add(int element) {
   if (i >= len) { // 数组空间不够了
     // 重新申请一个 2 倍大小的数组空间
     int new_array[] = new int[len*2];
     // 把原来 array 数组中的数据依次 copy 到 new_array
     for (int j = 0; j < len; ++j) {
       new_array[j] = array[j];
     }
     // new_array 复制给 array,array 现在大小就是 2len 了
     array = new_array;
     len = 2 * len;
   }
   // 将 element 放到下标为 i 的位置,下标 i 加一
   array[i] = element;
   ++i;
}

我的分析:代码描述往数组添加元素,当数组空间不够,就创建新的数组,并把旧数组复制到新数组中,新数组的长度是旧数组的两倍。
最好的case是数组长度还够,插入新数据,那么O(1)
最坏的case是数组长度不够,需要循环复制数据,那么O(n)
均摊和平均复杂度都一样,把复制数据的操作分摊到每一次插入的操作,所以还是O(1)

优秀解释
第一种计算方式: (1+1+…+1+n)/(n+1) = 2n/(n+1) 【注: 式子中1+1+…+1中有n个1】,所以平均复杂度为O(1);
第二种计算方式(加权平均法,又称期望): 1*(1/n+1)+1*(1/n+1)+…+1*(1/n+1)+n*(1/(n+1))=1,所以加权平均时间复杂度为O(1);
第三种计算方式(均摊时间复杂度): 前n个操作复杂度都是O(1),第n+1次操作的复杂度是O(n),所以把最后一次的复杂度分摊到前n次上,那么均摊下来每次操作的复杂度为O(1)

对循环的一些误解:之前有说过,如果循环次数有限,有一个确定的数字,那么时间复杂度是O(1),这里len=10,你会觉得这个是确定的值,所以循环次数是能看出来的,其实不然,因为这个len=10只是赋初值,len是不会一直等于10的,而是会增长的,因为每次都会乘上两倍嘛

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值