题意:现有一长度为n的空号码,给定整数k(满足n % k == 0)和具有n/k个元素的序列a[]和b[]。定义一个电话号码是good:将长度n分成n/k块,要求第i块填a[i]倍数且不能以b[i]开头,不够k位前面可以补0。
问你good 电话号码的个数%(1e9+7)。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define LL long long
const LL mod=1e9+7;
const LL maxm=1e5+10;
LL a[maxm];
LL b[maxm];
int main()
{
LL n,k;
while(scanf("%lld%lld",&n,&k)!=EOF)
{
for(LL i=0;i<n/k;i++)
{
scanf("%lld",&a[i]);
}
for(LL i=0;i<n/k;i++)
{
scanf("%lld",&b[i]);
}
LL m=1;
for(int i=1;i<=k;i++)
{
m*=10;
}
LL ans=1;
for(LL i=0;i<n/k;i++)
{
LL num1=(m-1)/a[i]+1;
LL num2=((m/10)-1)/a[i]+1;
LL num3=((m/10)*(b[i]+1)-1)/a[i]+1-((m/10)*b[i]-1)/a[i]-1;
if(b[i]==0)
{
ans*=(num1-num2);
}
else
{
ans*=(num1-num3);
}
ans%=mod;
}
printf("%lld\n",ans);
}
return 0;
}