10735 最简分数

描述

输入正整数a和b,分别作为分数的分子和分母,即分数ba​,输出分数ba​的最简形式,例如分数84​输出的最简形式为1/2,分数48​输出的最简形式为2,分数69​输出的最简形式为3/2。

输入描述

第一行包含两个整数a和b。(1≤a,b≤1000)

输出描述

分数ba​的最简形式。

样例输入 1 

4 8

样例输出 1 

1/2

题解 点个关注和赞再复制吧!!!

#include <bits/stdc++.h>
using namespace std;
int gcd(int a,int b){
	return b==0?a : gcd(b,a%b);
}
int main(){
	int fz,fm;
	cin>>fz>>fm;
	int cd=gcd(fz,fm);
	fz=fz/cd;
	fm=fm/cd;
	if(fz==0) cout<<0<<endl;
	else if(fm==1) cout<<fz<<endl;
	else cout<<fz<<"/"<<fm<<endl;
	return 0;
}

题目来源:千千蓝鲸

点个关注和赞再走吧,求求了!!!

### C++ 实现最简分数 为了实现将一个小数转换为其对应的最简分数形式,在C++中可以采用辗转相除法来找到分子分母大公约数,进而化该分数至不可再约的状态。下面展示了一个单的函数用于执行这一操作: ```cpp #include <iostream> #include <cmath> using namespace std; // 辗转相除法计算大公约数 int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } void decimalToFraction(double value) { // 将输入的小数值乘以一个较大的基数并取整,以便处理浮点误差 long base = pow(10, 14); long numerator = round(value * base); // 分子初始化为小数部分放大后的值 long denominator = base; // 分母初始化为基础倍率 // 使用gcd分数状态 long commonDivisor = gcd(numerator, denominator); numerator /= commonDivisor; denominator /= commonDivisor; cout << "The simplest form of the fraction is: " << numerator << "/" << denominator << endl; } ``` 此代码片段展示了如何通过先扩大给定的小数(为了避免浮点运算带来的精度损失),然后再利用`gcd()`函数去除两者共有的因子从而获得化的真分数表示方式。 当面对更复杂的情况比如循环小数时,则需要额外考虑识别重复模式以及调整算法逻辑[^3]。 #### 注意事项 - 对于非常接近但不是精确等于某个有理数的小数,由于计算机内部存储机制的原因可能会存在微小偏差; - 上述方法适用于有限位数的小数转换;对于无限不循环或周期较长的循环小数则需特殊处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值