题目大意:有n个人站成一排,现要求把他分成几组,要求每组的长度不能大于l并且每组最后一个人的身高必须严格大于前一个组的最后一个人的身高,每一组的得分为
B[i]^2-B[i-1],问总得分的最大值是多少;
题目解析:定义dp[i]表示以i作为结尾所能够取得的最大得分,那么dp[i]=max(dp[j]+val[i]*val[i]-val[j]);i-l<=j<i,并且a[j]<a[i],朴素dp是需要O(n^2)的,所以需要优化,一开始想着用单调队列,但是单调队列如果将所有人按照val排序之后,index就不是单调的了,所以只能用线段树优化,时间复杂度为O(nlogn);
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
const int inf=0x3fffffff;
const int maxn=100010;
struct node
{
ll val;
int index;
}q[maxn];
bool cmp(node a,node b)
{
if(a.val==b.val)
return a.index>b.index;
return a.val<b.val;
}
int n,lll,c;
ll dp[maxn*3];
void pushup(int rt)
{
dp[rt]=max(dp[rt<<1],dp[rt<<1|1]);
}
void build(int l,int r,int rt)
{
if(l==r)
{
dp[rt]=-1;
return;
}
int m=(l+r)>>1;
build(lson);
build(rson);
pushup(rt);
}
void update(int pos,int l,int r,int rt,ll x)
{
if(l==r)
{
dp[rt]=max(dp[rt],x);;
return ;printf("Case #%d: ",c++);
}
int m=(l+r)>>1;
if(pos<=m)
update(pos,lson,x);
else
update(pos,rson,x);
pushup(rt);
}
ll query(int le,int ri,int l,int r,int rt)
{
if(l>=le&&r<=ri) return dp[rt];
ll ans=-1;
if(l==r)
return dp[rt];
int m=(l+r)>>1;
if(m>=le) ans=max(ans,query(le,ri,lson));
if(m<ri) ans=max(ans,query(le,ri,rson));
return ans;
}
void solve()
{
scanf("%d%d",&n,&lll);
for(int i=1;i<=n;i++)
{
scanf("%lld",&q[i].val);
q[i].index=i+1;
}
printf("Case #%d: ",c++);
sort(q+1,q+n+1,cmp);
n++;
build(1,n,1);
update(1,1,n,1,0);
ll ans=-1;
for(int i=1;i<n;i++)
{
int l = max(1,q[i].index-lll);
int r = q[i].index-1;
ll temp=query(l,r,1,n,1);
//cout<<q[i].val<<" "<<l<<" "<<r<<" "<<temp<<endl;
if(temp==-1&&q[i].index==n) break;
if(temp==-1) continue;
temp+=q[i].val*q[i].val;
if(q[i].index==n)
{
ans=temp;
break;
}
update(q[i].index,1,n,1,temp-q[i].val);
}
if(ans==-1) printf("No solution\n");
else printf("%lld\n",ans);
}
int main()
{
int T;
scanf("%d",&T);
c=1;
while(T--)
{
solve();
}
return 0;
}