1、最长公共子序列、最长公共子串
最长公共子序列(Longest-Common-Subsequence,LCS)
dp[i][j]:dp[i][j]表示长度分别为i和j的序列X和序列Y构成的LCS的长度
dp[i][j] = 0,如果i=0 或 j=0
dp[i][j] = dp[i-1][j-1] + 1,如果 X[i-1] = Y[i-1]
dp[i][j] = max{ dp[i-1][j], dp[i][j-1] },如果 X[i-1] != Y[i-1]
LCS长度为 dp[Xlen][Ylen]
View Code
int dp[100][100]; // 存储LCS长度, 下标i,j表示序列X,Y长度
void LCS_dp(char * X, char * Y)
{
int i, j;
int xlen =strlen(X);
int ylen = strlen(Y);
//dp[0-xlen][0] & dp[0][0-ylen] 都已初始化0
for(i = 1; i <= xlen; ++i)
{
for(j = 1; j <= ylen; ++j)
{
if(X[i-1] == Y[j-1])
{
dp[i][j] = dp[i-1][j-1] + 1;
}
else if(dp[i][j-1] > dp[i-1][j])
{
dp[i][j] = dp[i][j-1];
}
else
{
dp[i][j] = dp[i-1][j];
}
}
}
printf("len of LCS is: %d\n",dp[xlen][ylen]);
i = xlen;
j = ylen;
int k = dp[i][j];
char lcs[100] = {'\0'};
while(i && j)
{
if(X[i-1] == Y[j-1] && dp[i][j] == dp[i-1][j-1] + 1)
{
lcs[--k] = X[i-1];
--i; --j;
}
else if(X[i-1] != Y[j-1] && dp[i-1][j] > dp[i][j-1])
{
--i;
}
else
{
--j;
}
}
printf("%s\n",lcs);
}
最长公共子串(Longest-Common-Substring,LCS)
dp[i][j]:表示X[0-i]与Y[0-j]的最长公共子串长度
dp[i][j] = dp[i-1][j-1] + 1,如果 X[i] == Y[j]
dp[i][j] = 0,如果 X[i] != Y[j]
初始化:i==0或者j==0,如果X[i] == Y[j],dp[i][j] = 1;否则dp[i][j] = 0。
最长公共子串的长度为max(dp[i][j])。
View Code
// 最长公共子串 DP
int dp[100][100];
void LCS_dp(char * X, char * Y)
{
int xlen = strlen(X);
int ylen = strlen(Y);
int maxlen = 0;
int maxindex = 0;
for(int i = 0; i < xlen; ++i)
{
for(int j = 0; j < ylen; ++j)
{
if(X[i] == Y[j])
{
if(i && j)
{
dp[i][j] = dp[i-1][j-1] + 1;
}
if(i == 0 || j == 0)
{
dp[i][j] = 1;
}
if(dp[i][j] > maxlen)
{
maxlen = dp[i][j];
maxindex = i + 1 - maxlen;
}
}
}
}
if(maxlen == 0)
{
printf("NULL LCS\n");
return;
}
printf("The len of LCS is %d\n",maxlen);
int i = maxindex;
while(maxlen--)
{
printf("%c",X[i++]);
}
printf("\n");
}
2、数组中最长递增子序列:如在序列1,-1,2,-3,4,-5,6,-7中,最长递增序列为1,2,4,6。
时间复杂度O(N^2)的算法:
LIS[i]:表示数组前i个元素中(包括第i个),最长递增子序列的长度
LIS[i] = max{ 1, LIS[k]+1 }, 0 <= k < i, a[i]>a[k]
View Code
int LIS(int a[], int length)
{
int *LIS = new int[length];
for(int i = 0; i < length; ++i)
{
LIS[i] = 1; //初始化默认长度
for(int j = 0; j < i; ++j) //前面最长的序列
if(a[i] > a[j] && LIS[j]+1 > LIS[i])
LIS[i] = LIS[j]+1;
}
int max_lis = LIS[0];
for(int i = 1; i < length; ++i)
if(LIS[i] > max_lis)
max_lis = LIS[i];
return max_lis; //取LIS的最大值
}
时间复杂度O(NlogN)的算法:
辅助数组b[],用k表示数组b[]目前的长度,算法完成后k的值即为LIS的长度。
初始化:b[0] = a[0],k = 1
从前到后扫描数组a[],对于当前的数a[i],比较a[i]和b[k-1]:
如果a[i]>b[k-1],即a[i]大于b[]最后一个元素,b[]的长度增加1,b[k++]=a[i];
如果a[i]<b[k-1],在b[1]...b[k]中二分查找第一个大于a[i]的数b[j],修改b[j]=a[i]。
LIS的长度为k
View Code
//修改的二分搜索算法,若要查找的数w在长为len的数组b中存在则返回下标
//若不存在,则返回b数组中的第一个大于w的那个元素的下标
int BiSearch(int *b, int len, int w)
{
int left = 0, right = len-1;
int middle;
while(left <= right)
{
middle = (left+right)/2;
if(b[middle] > w)
right = middle - 1;
else if(b[middle] < w)
left = middle + 1;
else
return middle;
}
//返回b数组中的刚刚大于w的那个元素的下标
return (b[middle]>w) ? middle : middle+1;
}
int LIS(int *array, int n)
{
int *B = new int[n];
int len = 1;
B[0] = array[0];
for(int i=1; i<n; ++i)
{
if(array[i] > B[len-1])
{
B[len] = array[i];
++len;
}
else
{
int pos = BiSearch(B, len, array[i]);
B[pos] = array[i];
}
}
delete []B;
return len;
}
3、计算字符串的相似度(编辑距离)
为了判断字符串的相似程度,定义了一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为: 1.修改一个字符。2.增加一个字符。3.删除一个字符。
比如,对于“abcdefg”和“abcdef”两个字符串来说,可以通过增加/减少一个“g“的方式来达到目的。上面的两种方案,都仅需要一次操作。把这个操作所需要的次数定义为两个字符串的距离,给定任意两个字符串,写出一个算法来计算出它们的距离。
设 L(i,j)为使两个字符串和Ai和Bj相等的最小操作次数。
当ai==bj时 显然 L(i,j) = L(i-1,j-1)
当ai!=bj时 L(i,j) = min(L(i-1,j-1), L(i-1,j), L(i,j-1) ) + 1
View Code
int minValue(int a, int b, int c)
{
int t = a <= b ? a:b;
return t <= c ? t:c;
}
int calculateStringDistance(string strA, string strB)
{
int lenA = (int)strA.length()+1;
int lenB = (int)strB.length()+1;
int **c = new int*[lenA];
for(int i = 0; i < lenA; i++)
c[i] = new int[lenB];
for(int i = 0; i < lenA; i++) c[i][0] = i;
for(int j = 0; j < lenB; j++) c[0][j] = j;
c[0][0] = 0;
for(int i = 1; i < lenA; i++)
{
for(int j = 1; j < lenB; j++)
{
if(strB[j-1] == strA[i-1])
c[i][j] = c[i-1][j-1];
else
c[i][j] = minValue(c[i][j-1], c[i-1][j], c[i-1][j-1]) + 1;
}
}
int ret = c[lenA-1][lenB-1];
for(int i = 0; i < lenA; i++)
delete [] c[i];
delete []c;
return ret;
}
4、8*8的棋盘上面放着64个不同价值的礼物,每个小的棋盘上面放置一个礼物(礼物的价值大于0),一个人初始位置在棋盘的左上角,每次他只能向下或向右移动一步,并拿走对应棋盘上的礼物,结束位置在棋盘的右下角,请设计一个算法使其能够获得最大价值的礼物。
动态规划算法:
dp[i][j] 表示到棋盘位置(i,j)上可以得到的最大礼物值
dp[i][j] = max( dp[i][j-1] , dp[i-1][j] ) + value[i][j] (0<i,j<n)
View Code
int GetMaxValue(int **dp, int **value)
{
int i, j, n = 8;
dp[0][0] = value[0][0];
for(i = 1; i < n; i++)
{
dp[i][0] = dp[i-1][0] + value[i][0];
}
for(j = 1; j < n; j++)
{
dp[0][j] = dp[0][j-1] + value[0][j];
}
for(i = 1; i < n; i++)
{
for(j = 1; j < n; j++)
{
dp[i][j] = max(dp[i][j-1] , dp[i-1][j]) +value[i][j];
}
}
return dp[n-1][n-1];
}
5、给定一个整数数组,求这个数组中子序列和最大的最短子序列,如数组a[]={1,2,2,-3,-5,5}子序列和最大为5,最短的为a[5]。
动态规划
sum[i] = max(sum[i-1]+a[i], a[i]) (sum[0]=a[0],1<=i<=n)
len[i] = max(len[i-1]+1, 0) (len[0]=0,1<=i<=n)
View Code
void max_sub(int a[], int size)
{
int *sum = new int[size];
int *len = new int[size];
int temp_sum = 0;
sum[0] = a[0];
len[0] = 0;
for(int i = 1; i < size; i++)
{
temp_sum = sum[i-1] + a[i];
if(temp_sum > a[i])
{
sum[i] = temp_sum;
len[i] = len[i-1]+1;
}
else
{
sum[i] = a[i];
len[i] = 0;
}
}
int index = 0;
for(int i = 1; i < size; i++)
{
if(sum[i] > sum[index])
index = i;
else if(sum[i] == sum[index] && len[i] < len[index])
index = i;
}
printf("Max sub sum is %d, from %d to %d",sum[index],index-len[index],index);
delete []sum;
delete []len;
}
6、子数组的最大和
状态方程:
Start[i] = max{A[i], Start[i-1]+A[i]}
All[i] = max{Start[i], All[i-1]}
View Code
int MaxSum(int *A, int n)
{
int * All = new int[n];
int * Start = new int[n];
All[0] = Start[0] = A[0];
for(int i=1; i<n; ++i)
{
Start[i] = max(A[i], A[i]+Start[i-1]);
All[i] = max(Start[i], All[i-1]);
}
int max = All[n-1];
delete []All;
delete []Start;
return max;
}
因为Start[i-1]只在计算Start[i]时使用,而且All[i-1]也只在计算All[i]时使用,所以可以只用两个变量就够了,节省空间。
View Code
int MaxSum(int *A, int n)
{
int All = A[0];
int Start = A[0];
for(int i=1; i<n; ++i)
{
Start = max(A[i], A[i]+Start);
All = max(Start, All);
}
return All;
}
7、在数组中,数字减去它右边的数字得到一个数对之差。求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,11, 9}中,数对之差的最大值是11,是16减去5的结果。
思路:假设f[i]表示数组中前i+1个数的解,前i+1个数的最大值为m[i]。则状态转移方程:
f[i] = max(f[i-1], m[i-1] - a[i]), m[i] = max(m[i-1],a[i])。问题的解为f[n-1]。
View Code
int MaxDiff_Solution1(int *pArray, int nLen)
{
if(pArray == NULL || nLen <= 1)
return 0;
int *f = new int[nLen];
int *m = new int[nLen];
f[0] = 0; //1个数的情况
m[0] = pArray[0];
for(int i = 1; i < nLen; i++)
{
f[i] = max(f[i-1], m[i-1] -pArray[i]);
m[i] = max(m[i-1], pArray[i]);
}
return f[nLen - 1];
}
上述代码用了两个辅助数组,其实只需要两个变量,前i个数的情况只与前i-1个数的情况有关。在“子数组的最大和问题”中,也使用过类似的技术。
View Code
int MaxDiff_Solution2(int *pArray, int nLen)
{
if(pArray == NULL || nLen <= 1)
return 0;
int f = 0;
int m = pArray[0];
for(int i = 1; i < nLen; i++)
{
f = max(f, m - pArray[i]);
m = max(m, pArray[i]);
}
return f;
}
8、从一列数中筛除尽可能少的数使得从左往右看,这些数是从小到大再从大到小的。
双端 LIS 问题,用 DP 的思想可解,目标规划函数 max{ b[i] + c[i] - 1}, 其中 b[i] 为从左到右,0--i 个数之间满足递增的数字个数;c[i] 为从右到左,n-1--i个数之间满足递增的数字个数。最后结果为 n-max 。
View Code
/*
a[] holds the original numbers
b[i] holds the number of increasingnumbers from a[0] to a[i]
c[i] holds the number ofincreasing numbers from a[n-1] to a[i]
*/
int double_lis(int a[], int n)
{
int *b = new int[n];
int *c = new int[n];
// updatearray b from left to right
for(int i = 0; i < n; ++i)
{
b[i] = 1;
for(int j = 0; j < i; ++j)
if(a[i] > a[j] && b[j]+1 > b[i])
b[i] = b[j] + 1;
}
// updatearray c from right to left
for (int i = n-1; i >= 0; --i)
{
c[i] = 1;
for(int j = n-1; j > i; --j)
if(a[i] > a[j] && c[j]+1 > c[i])
c[i] = c[j] + 1;
}
int max = 0;
for (int i = 0; i < n; ++i )
{
if (b[i]+c[i] > max)
max = b[i] + c[i];
}
max = max-1; //delete therepeated one
delete []b;
delete []c;
return n-max;
}
9、从给定的N个正数中选取若干个数之和最接近M
解法:转换成01背包问题求解,从正整数中选取若干个数放在容量为M的背包中。
View Code
#include <stdio.h>
const int MAX = 10010;
int f[MAX];
int g[MAX][MAX];
int main()
{
//从数组value中选中若干个数之和最接近V
int value[] = {2,9,5,7,4,11,10};
int V = 33; //子集和
int N = sizeof(value)/sizeof(value[0]);
for(int i = 0; i <= V; ++i) //初始化:没要求和一定是V
{
f[i] = 0;
}
for(int i = 0; i < N; ++i)
{
for(int v = V; v >= value[i]; --v)
{
if(f[v] < f[v-value[i]] + value[i] ) //选value[i]
{
f[v] = f[v-value[i]] +value[i];
g[i][v] = 1;
}
else //不选value[i]
{
f[v] = f[v];
g[i][v] = 0;
}
}
}
printf("%d\n",f[V]);
int i = N; //输出解
int v = V;
while(i-- > 0)
{
if(g[i][v] == 1)
{
printf("%d, ",value[i]);
v -= value[i];
}
}
printf("\n");
return 0;
}
从给定的N个正数中选取若干个数之和为M
View Code
#include <iostream>
#include <list>
using namespace std;
void find_seq(int sum, int index, int * value, list<int> & seq)
{
if(sum <= 0 || index < 0) return;
if(sum == value[index])
{
printf("%d ", value[index]);
for(list<int>::iterator iter = seq.begin(); iter !=seq.end(); ++iter)
{
printf("%d ", *iter);
}
printf("\n");
}
seq.push_back(value[index]);
find_seq(sum-value[index], index-1, value, seq); //放value[index]
seq.pop_back();
find_seq(sum, index-1, value, seq); //不放value[index]
}
int main()
{
int M;
list<int> seq;
int value[] = {2,9,5,7,4,11,10};
int N = sizeof(value)/sizeof(value[0]);
for(int i = 0; i < N; ++i)
{
printf("%d ",value[i]);
}
printf("\n");
scanf("%d", &M);
printf("可能的序列:\n");
find_seq(M, N-1, value, seq);
return 0;
}
10、将一个较大的钱,不超过1000的人民币,兑换成数量不限的100、50、10、5、2、1的组合,请问共有多少种组合呢?
解法:01背包中的完全背包问题(即每个物品的数量无限制)
dp[i][j]:表示大小为j的价值用最大为money[i]可表示的种类数
View Code
#define NUM 7
int money[NUM] = {1, 2, 5, 10, 20, 50, 100};
// 动态规划解法(完全背包)
int NumOfCoins(int value)
{
int dp[7][1010];
for(int i = 0; i <= value; ++i)
dp[0][i] = 1;
for(int i = 1; i < NUM; ++i)
{
for(int j = 0; j <= value; ++j)
{
if(j >= money[i])
dp[i][j] = dp[i][j-money[i]] +dp[i-1][j];
else
dp[i][j] = dp[i-1][j];
}
}
return dp[6][value];
}
11、捞鱼问题:20个桶,每个桶中有10条鱼,用网从每个桶中抓鱼,每次可以抓住的条数随机,每个桶只能抓一次,问一共抓到180条的排列有多少种。
分析:看看这个问题的对偶问题,抓取了180条鱼之后,20个桶中剩下了20条鱼,不同的抓取的方法就对应着这些鱼在20个桶中不同的分布,于是问题转化为将20条鱼分到20个桶中有多少中不同的分类方法(这个问题当然也等价于180条鱼分到20个桶中有多少种不同的方法)。
dp[i][j]:前i个桶放j条鱼的方法共分为11种情况:前i-1个桶放j-k(0<=k<=10)条鱼的方法总和。我们可以得到状态方程:f(i,j) = sum{f(i-1,j-k), 0<=k<=10}
View Code
/*捞鱼:将20条鱼放在20个桶中,每个桶最多可以放10条,求得所有的排列方法
/*自底向上DP f(i,j) =sum{ f(i-1,j-k), 0<=k<=10 }
/*该方法中测试 20个桶 180条鱼,与递归速度做对比
*/
void CatchFish()
{
int dp[21][200]; // 前i个桶放j条鱼的方法数
int bucketN = 20;
int fishN = 20;
memset(dp,0,sizeof(dp));
for(int i = 0; i <= 10; ++i) // 初始化合法状态
{
dp[1][i] = 1;
}
for(int i = 2; i <= bucketN; ++i) // 从第二个桶开始
{
for(int j = 0; j <= fishN; ++j)
{
for(int k = 0; k <= 10 && j-k >= 0; ++k)
{
dp[i][j] += dp[i-1][j-k];
}
}
}
printf("%d\n",dp[bucketN][fishN]);
}
12、n个骰子的点数:把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的出现的值。
F(k,n) 表示k个骰子点数和为n的种数,k表示骰子个数,n表示k个骰子的点数和
对于 k>0,k<=n<=6*k
F(k,n) = F(k-1,n-6) + F(k-1,n-5) + F(k-1,n-4) + F(k-1,n-3) + F(k-1,n-2) +F(k-1,n-1)
对于 n<k or n>6*k
F(k,n) = 0
当k=1时,F(1,1)=F(1,2)=F(1,3)=F(1,4)=F(1,5)=F(1,6)=1
View Code
void SumOfDices()
{
int dp[21][6*20+1]; // k个骰子,和为n的种类数,不超过20个骰子
int number = 3; // 骰子数
int face = 6; // 面数,6面
memset(dp,0,sizeof(dp));
for(int i = 1; i <= 6; ++i) // 初始化1个骰子的情况
{
dp[1][i] = 1;
}
for(int i = 2; i <= number; ++i) // 从第二个骰子开始
{
for(int j = i; j <= face * i; ++j) // i个骰子的点数从i到i*6
{
for(int k = 1; k <= face && j-k >= 0; ++k)
{
dp[i][j] += dp[i-1][j-k];
}
}
}
for(int i = 0; i <= number * face; ++i)
{
printf("Sum = %d, Number is %d\n",i,dp[number][i]);
}
}
13、给定三个字符串A,B,C;判断C能否由AB中的字符组成,同时这个组合后的字符顺序必须是A,B中原来的顺序,不能逆序;例如:A:mnl,B:xyz;如果C为mnxylz,就符合题意;如果C为mxnzly,就不符合题意,原因是z与y顺序不是B中顺序。
DP求解:定义dp[i][j]表示A中前i个字符与B中前j个字符是否能组成C中的前(i+j)个字符,如果能标记true,如果不能标记false; 有了这个定义,我们就可以找出状态转移方程了,初始状态dp[0][0] = 1:
dp[i][j] = 1 如果 dp[i-1][j] == 1 && C[i+j-1] == A[i-1]
dp[i][j] = 1 如果 dp[i][j-1] == 1 && C[i+j-1] == B[j-1]
View Code
#include <iostream>
using namespace std;
char A[201];
char B[201];
char C[401];
int dp[201][201]; // dp[i][j] 表示A前i个字符与B前j个字符是否能构成C前i+j个字符
int main()
{
memset(dp,0,sizeof dp);
scanf("%s %s %s", A, B, C);
int lenA = strlen(A);
int lenB = strlen(B);
dp[0][0] = 1;
for(int i = 0; i <= lenA; ++i)
{
for(int j = 0; j <= lenB; ++j)
{
if(i > 0 && (dp[i-1][j] == 1) && (C[i+j-1] == A[i-1]))
{
dp[i][j] = 1;
}
if(j > 0 && (dp[i][j-1] == 1) && (C[i+j-1] == B[j-1]))
{
dp[i][j] = 1;
}
}
}
printf("%s\n",dp[lenA][lenB] ? "yes" : "no");
return 0;
}