参考:https://mp.weixin.qq.com/s/VtB3cdTGB67iqok5pxYyhw
一致性:强一致性、弱一致性、最终一致性。
-
弱一致性:这种一致性级别约束了系统在写入成功后,不承诺立即可以读到写入的值,也不承诺多久之后数据能够达到一致,但会尽可能地保证到某个时间级别(比如秒级别)后,数据能够达到一致状态
-
最终一致性:最终一致性是弱一致性的一个特例,系统会保证在一定时间内,能够达到一个数据一致的状态。这里之所以将最终一致性单独提出来,是因为它是弱一致性中非常推崇的一种一致性模型,也是业界在大型分布式系统的数据一致性上比较推崇的模型
三个经典的缓存模式
-
Cache-Aside Pattern
-
Read-Through/Write-through
-
Write-behind
一、Cache-Aside Pattern
Cache-Aside Pattern,即旁路缓存模式,它的提出是为了尽可能地解决缓存与数据库的数据不一致问题。
Cache-Aside读流程
Cache-Aside Pattern的读请求流程如下:
-
读的时候,先读缓存,缓存命中的话,直接返回数据
-
缓存没有命中的话,就去读数据库,从数据库取出数据,放入缓存后,同时返回响应。
Cache-Aside 写流程
Cache-Aside Pattern的写请求流程如下:
更新的时候,先更新数据库,然后再删除缓存。
二、Read-Through/Write-Through(读写穿透)
Read/Write-Through模式中,服务端把缓存作为主要数据存储。应用程序跟数据库缓存交互,都是通过抽象缓存层完成的。
Read-Through
Read-Through的简要流程如下
-
从缓存读取数据,读到直接返回
-
如果读取不到的话,从数据库加载,写入缓存后,再返回响应。
多了一层Cache-Provider而已,应用程序请求,Cache Provider 去缓存获取数据,如无的话,向数据库获取,之后put(key,entity)缓存,之后从缓存获取值,返回。
Write-Through
Write-Through模式下,当发生写请求时,也是由缓存抽象层完成数据源和缓存数据的更新,流程如下:
应用程序->Cache Provider --更新->数据源----->更新缓存
三、Write-behind (异步缓存写入)
Write-behind 跟Read-Through/Write-Through有相似的地方,都是由Cache Provider来负责缓存和数据库的读写。它们又有个很大的不同:Read/Write-Through是同步更新缓存和数据的,Write-Behind则是只更新缓存,不直接更新数据库,通过批量异步的方式来更新数据库。
这种方式下,缓存和数据库的一致性不强,对一致性要求高的系统要谨慎使用。但是它适合频繁写的场景,MySQL的InnoDB Buffer Pool机制就使用到这种模式。
数据库和缓存数据保持强一致,可以嘛?
实际上,没办法做到数据库与缓存绝对的一致性。
-
缓存及数据库封装CAS乐观锁,更新缓存时通过lua脚本?
-
分布式事务,3PC?TCC?
3种方案保证数据库与缓存的一致性
缓存延时双删
有些小伙伴可能会说,并不一定要先操作数据库呀,采用缓存延时双删策略,就可以保证数据的一致性啦。什么是延时双删呢?
写请求->删除缓存->更新数据库->删除缓存
-
先删除缓存
-
再更新数据库
-
休眠一会(比如1秒),再次删除缓存。
这种方案还算可以,只有休眠那一会(比如就那1秒),可能有脏数据,一般业务也会接受的。但是如果第二次删除缓存失败呢?缓存和数据库的数据还是可能不一致,对吧?给Key设置一个自然的expire过期时间,让它自动过期怎样?那业务要接受过期时间内,数据的不一致咯?还是有其他更佳方案呢?
删除缓存重试机制
不管是延时双删还是Cache-Aside的先操作数据库再删除缓存,都可能会存在第二步的删除缓存失败,导致的数据不一致问题。可以使用这个方案优化:删除失败就多删除几次呀,保证删除缓存成功就可以了呀~ 所以可以引入删除缓存重试机制
-
写请求更新数据库
-
缓存因为某些原因,删除失败
-
把删除失败的key放到消息队列
-
消费消息队列的消息,获取要删除的key
-
重试删除缓存操作
读取biglog异步删除缓存
重试删除缓存机制还可以吧,就是会造成好多业务代码入侵。其实,还可以这样优化:通过数据库的binlog来异步淘汰key。
以mysql为例吧
-
可以使用阿里的canal将binlog日志采集发送到MQ队列里面
-
然后通过ACK机制确认处理这条更新消息,删除缓存,保证数据缓存一致性
392

被折叠的 条评论
为什么被折叠?



