Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices.Since matrix multiplication is associative, the order in which multiplications are performed isarbitrary. However, the number of elementary multiplications needed strongly depends on theevaluation order you choose. For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix.There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C). The first one takes 15000 elementary multiplications, but the second one only 3500. Your job is to write a program that determines the number of elementary multiplications needed fora given evaluation strategy. Input SpecificationInput consists of two parts: a list of matrices and a list of expressions. The first line of the input file contains one integer n ( ), representing the number ofmatrices in the first part. The next n lines each contain one capital letter, specifying the name of thematrix, and two integers, specifying the number of rows and columns of the matrix. The second part of the input file strictly adheres to the following syntax (given in EBNF): SecondPart = Line { Line } <EOF> Line = Expression <CR> Expression = Matrix | "(" Expression Expression ")" Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z" Output SpecificationFor each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses. Sample Input9 A 50 10 B 10 20 C 20 5 D 30 35 E 35 15 F 15 5 G 5 10 H 10 20 I 20 25 A B C (AA) (AB) (AC) (A(BC)) ((AB)C) (((((DE)F)G)H)I) (D(E(F(G(HI))))) ((D(EF))((GH)I)) Sample Output0 0 0 error 10000 error 3500 15000 40500 47500 15125 题意: 输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数。若矩阵可以进行相乘假设A*B,则A的列要等于B的列 假定A和m*n的,B是n*p的,那么AB是m*p的,乘法次数为m*n*p 算法:用一个栈。遇到字母时入栈,再遇到“)”时,将字母出栈(只会有两个字母)并计算,最后再把结果入栈。 |
UVA - 442 Matrix Chain Multiplication
最新推荐文章于 2022-11-21 14:59:18 发布