我也不知道这算原创还是转载了- -说原创吧,不合适,算法不是我想的,模板是LRJ的,本来想照着这个思路自己写一个的,结果写着写着有好多问题,然后要修改,改来改去还是人家模板里处理得好= =说转载把。。好歹我也在这上面说了这么多废话,要是有一类叫做”窜改“那就好了= =
我就随便一说。。。
poj 1273 裸的网络流,给的点又少,看网上不少人是用邻接矩阵存的边,本来也想这么写的,可是谁敢保证别的题给的点也少。。还是别懒了吧= =
一开始数组的大小忘了加反向弧了,RE然后WA,也不知道为毛数组开小了会WA
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
int n,m,d[205],cur[205];
#define INF 1000000000
typedef struct
{
int from,to;
__int64 cap;
}Edge;
Edge e[550];
vector<int> V[550];
queue<int> Q;
void input()
{
int cnt=0;
for(int i=0;i<=n-1;i++)
{
Edge tmp_e,re;
scanf("%d%d%d",&e[cnt].from,&e[cnt].to,&e[cnt].cap);
V[e[cnt].from].push_back(cnt);
tmp_e.from=e[cnt].to;
tmp_e.to=e[cnt].from;
tmp_e.cap=0;//反向弧一开始容量都为0,因为不能抵消
cnt++;
e[cnt]=tmp_e;
V[e[cnt].from].push_back(cnt);
cnt++;
}
return;
}
bool bfs()
{//分层,最短增广路算法所以找路最短的
Q.push(1);
d[1]=0;
bool v[205]={0};
v[1]=1;
int x;
while(!Q.empty())
{
x=Q.front();
Q.pop();
for(vector<int>::iterator it=V[x].begin();it!=V[x].end();it++)
{
if(!v[e[(*it)].to]&&e[(*it)].cap>0)//要保证这条边在残量网络中存在
{
d[e[(*it)].to]=d[x]+1;
v[e[(*it)].to]=1;
Q.push(e[(*it)].to);
}
}
}
return v[m];
}
__int64 dfs(int x,__int64 a)
{//x 节点 a 分配给这个节点以后的图的通量
if(x==m||a==0) return a;
__int64 ans=0;
for(int &i=cur[x];i<V[x].size();i++)
{//第一次用&,确实挺好用的,这一步为什么可以这么优化还没想清楚
Edge &now=e[(V[x][i])];
__int64 f;
if(d[now.to]==d[x]+1&&now.cap>0&&(f=dfs(now.to,min(a,now.cap)))>0)
{
now.cap-=f;//这条路分了f的通量
e[(V[x][i])^1].cap+=f;//反向弧加f,以便抵消
a-=f;//剩余通量
ans+=f;//这个节点分得通量
}
if(a==0) break;
}
return ans;
}
__int64 dinic()
{
__int64 ans=0;
while(bfs())
{//要循环到没有从起点到终点的路,每次dfs以后图的层次会改变,都要重新搜索
memset(cur,0,sizeof(cur));
ans+=dfs(1,INF);
}
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=0;i<=m;i++)
V[i].clear();
input();
printf("%I64d\n",dinic());
}
return 0;
}
暂时还不会总结。。总之我把这个dfs理解成一个分配的问题了,一条路走到一个节点时分配给这个节点的流量的最大值就是前面每条边容量的最小值,然后求得实际的能达到的通量然后更新每条边的容量就好,求得的通量就是现在这个图的最大通量,然后再更新分层,倒是不难理解。至于为什么要找最短增广路。。大概因为路越短dfs越少,然后更新得快吧,这样还避免了成环什么的一些麻烦事情,因为一开始就接触这个, 也没体验不这么做会有多少麻烦。