Dinic算法

Dinic算法在处理网络流问题时,特别是在稠密图上表现出优越效率。它通过分层思想、多路增广及当前弧优化提高算法效率。在最多n-1轮增广后可得最大流,时间复杂度为O(n^2m),实际运行速度优于理论上限。对于二分图最大匹配问题,其时间复杂度为O(mn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相比于EK算法,Dinic算法在稀疏图上效率相当(可视n、m相近),而在稠密图上的处理更优秀。
对网络流基本思想不清楚可参见我的另一篇博客《网络流的核心思想》。

分层思想

Dinic算法在每次增广前,先用 BFS 来将图分层。设源点的层数为 0 0 0,那么一个点的层数便是它离源点的最近距离。

通过分层,可起到如下两种效果:

  1. 如果不存在到汇点的增广路(即汇点的层数不存在),我们即可停止增广。
  2. 确保我们找到的增广路是最短的(每次找增广路的时候,都只找比当前点层数多 1 1 1的点进行增广)。

两个优化

  1. 多路增广:在使用EK算法时,由于我们使用BFS找增广路,当每次贪心取得一条增广路并增广后,我们从汇点沿着增广路往前走,很可能会遇见一些点实际经过的流量小于改点所有入度的容量和,或者说在残量网络中,改点的入度和初度均大于 0 0 0,显然我们可以利用该点后向弧的残量向该点前向弧增广。上面的这一过程涉及到回溯的操作,BFS处理这一操作并不方便。而Dinic算法使用DFS找增广路,这就给了我们使用一次DFS找到多条增广路并增广的机会(见代码),大大提高了算法的效率。
  2. 当前弧优化:显然,由于上述多路增广操作,对于任意节点,我们每增广它的一条前向弧,意味着这条弧后所有边都被我们多路增广过了,那么当我们再次处理该节点时,就可以不用考虑这条弧。或者说,如果一条边已经被增广过,那么它就没有可能被增广第二次。那么,我们下一次进行增广的时候,就可以不必再走那些已经被增广过的边。

时间复杂度

最多仅需 n − 1 n-1 n1轮增广即可求得最大流,单轮增广的最坏复杂度是 O ( n m ) O(nm) O(nm),总的复杂度为 O ( n 2 m ) O(n^2m) O(n2m),但事实上对于随机图,Dinic的实际运行速度要远由于这一时间上界。

特别地,在求解二分图最大匹配问题时,Dinic 算法的时间复杂度是 O ( m n ) O(m\sqrt n) O(mn )

对于时间复杂度的证明可参考OI-Wiki相关内容

//
// Created by Visors on 2020/9/26.
//
// 题目名:【模板】网络最大流
// 题目来源:luogu
// 题目链接:https://www.luogu.com.cn/problem/P3376
// 算法:Dinic.cpp
// 用途:网络最大流
// 时间复杂度:O(m*n^2)
//

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int oo = 0x7fffffff;

struct Edge {
    int from;       // 起点
    int to;         // 终点
    int capacity;   // 容量
    int flow;       // 流量
    int next;       // 下条边

    Edge() = default;

    Edge(int from, int to, int capacity, int flow, int next) : from(from), to(to), capacity(capacity), flow(flow),
                                                               next(next) {}
};

vector<Edge> edges; // 边集
vector<int> heads;  // 首边集
vector<int> levels; // 层级
vector<bool> vis;   // 是否增广
vector<int> cur;    // 当前弧

int n, m, s, t;

inline void addEdge(int u, int v, int c, int f) {
    edges.emplace_back(v, u, 0, -f, heads[v]);
    heads[v] = edges.size() - 1;
    edges.emplace_back(u, v, c, f, heads[u]);
    heads[u] = edges.size() - 1;
}

bool bfs() {
    // 初始化分层以及访问标记
    fill(levels.begin(), levels.end(), 0);
    fill(vis.begin(), vis.end(), false);
    queue<int> q;
    q.push(s);
    vis[s] = true;
//    levels[s] = 0;
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        for (int i = heads[u]; ~i; i = edges[i].next) {
            Edge &e = edges[i];
            int &v = e.to;
            if (!vis[v] && e.capacity > e.flow) {
                vis[v] = true;
                levels[v] = levels[u] + 1; // 层级+1
                q.push(v);
            }
        }
    }
    return vis[t]; // 返回
}

ll dfs(int u, int imp) {
    if (u == t || imp == 0) return imp;
    ll ret = 0;
    int f;
    // 当前弧优化,注意下面的i是cur元素的引用
    for (int &i = cur[u]; ~i; i = edges[i].next) {
        Edge &e = edges[i];
        int &v = e.to;
        // 多路增广优化,利用dfs性质分路求解尽可能跑尽当前可改进量imp
        if (levels[v] == levels[u] + 1 && (f = dfs(v, min(imp, e.capacity - e.flow))) > 0) {
            e.flow += f;
            edges[i ^ 1].flow -= f;
            ret += f; // 网络总流量增加
            imp -= f; // 当前可改进量减少
            if (imp == 0) break;
        }
    }
    return ret;
}

ll maxFlow() {
    ll flow = 0;
    // 只要BFS还能给汇点分层,就证明当前残量网络还存在从源到汇的增广路
    while (bfs()) {
        // 每轮BFS前重置当前弧标记
        for (int i = 0; i < n; i++) cur[i] = heads[i];
        flow += dfs(s, oo);
    }
    return flow;
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr), cout.tie(nullptr);
    scanf("%d%d%d%d", &n, &m, &s, &t);
    s--, t--;
    edges.clear();
    heads.resize(n, -1);
    levels.resize(n);
    vis.resize(n);
    cur.resize(n);
    for (int i = 1, u, v, c; i <= m; i++) {
        scanf("%d%d%d", &u, &v, &c);
        addEdge(u - 1, v - 1, c, 0);
    }
    cout << maxFlow() << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值