最近点对(HDOJ1007)

一 问题描述

假设平面内有N个点,每个点以坐标(x, y)给出,N的数据量很大,如何求出其中最近的两个点。

二 算法

一种方法是暴力,通过枚举任意两个点,找到最小的,一共要比较C(n, 2)次,故实践复杂度为O(n2)。
另外一种解法用到了分治的思想,步骤为:
  • 把所有点按x坐标的大小排序,从中间一份为二。
  • 最近点对有三种情况,都在左边,都在右边,左右都有
  • 递归求出都在左边和都在右边的情况,选一个最小值curmin。
  • 然后求出两边各有一个的情况得结果为tmp,求法请参考给个链接
  • http://www.cnblogs.com/king1302217/archive/2010/07/08/1773413.html
  • 取tmp和curmin的最小值为结果

三 代码

#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
#include <cmath>
using namespace std;


typedef struct node
{
    double x;
    double y;
}point;
point p[100001];
point y[100001];

int cmp_x(point a, point b)
{
    return a.x < b.x;
}

int cmp_y(point a, point b)
{
    return a.y < b.y;
}

double dist(point a, point b)
{
    return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}

double find_near(int l, int r)
{
    if (r - l == 1)
        return dist(p[l], p[r]);
    if (r - l == 2)
        return min(min(dist(p[l], p[l+1]), dist(p[l+1], p[l+2])), dist(p[l], p[l+2]));

    int mid = (l+r) / 2;
    double curmin = min(find_near(l, mid), find_near(mid+1, r));
    int ith = 0;
    int i,j;
	for (i = l; i <= r; i++)
	{
		if (p[mid].x - p[i].x <= curmin || p[i].x - p[mid].x <= curmin)
			y[ith++] = p[i];
	}
	sort(y, y + ith, cmp_y);
	int num;
	for (i = 0; i < ith; ++i)
		for (j = i+1, num = 0; j < ith && num < 7; ++num, ++j)
			if ( dist(y[i], y[j]) < curmin )
				curmin = dist(y[i], y[j]);
			else
				break;
	return curmin;

}
int main()
{
    freopen("in.txt", "r", stdin);
    int n;
    while (cin >> n && n)
    {
    	int i;
    	for (i = 0; i < n; ++i)
    		scanf("%lf%lf", &p[i].x, &p[i].y);
    	sort(p, p+n, cmp_x);
    	printf("%.2lf\n", find_near(0, n-1)/2);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值