时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld
题目描述
给个n,求1到n的所有数的约数个数的和~
输入描述:
第一行一个正整数n
输出描述:
输出一个整数,表示答案
示例1
输入
3
输出
5
说明
样例解释: 1有1个约数1 2有2个约数1,2 3有2个约数1,3
备注:
n <= 100000000先想如何求约数和, 我们可以枚举约数,有多少数是他的约数。 n / i, 可以发现,枚举到n/2时,往后的所有数的倍数只有他自己,n/i = 1(i>n/2
然后复杂度到了1e9一定是超时的。
我们观察约数和为 n /1 + n / 2 + n / 3 + ..... + n / n是一个 y = n / x (n >=x >= 1)函数上的离散值。。我们只要求出这个函数 1 - n范围内的离散值和就可以了。
然后发现该函数是关于 y = x 对称的 对称点在 x ^ 2 = n处。然后和就相当于求面积了。。画个函数图就都出来了
#include<stdio.h>
#include<math.h>
int main() {
int t;
scanf("%d",&t);
int n;
while(t--) {
int i;
int t;
long long sum=0;
scanf("%d",&n);
t=(int)sqrt((double)n);
for(i=1;i<=t;i++)
sum+=(n/i);
sum*=2;
sum=sum-t*t;
printf("%lld\n",sum);
}
return 0;
}