Leetcode 打卡
738.单调递增的数字
解题思路:
利用贪心算法:此题从后向前遍历;一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),利用flag标记该位置,strNum[i - 1]–,然后从flag到len ;strNum[i]赋值为9;注意设置flag参数标记第一个大于str[i]的位置,一定要从strnum.length()开始;
代码实现
class Solution {
public:
int monotoneIncreasingDigits(int N) {
//to_string 将数字转换为字符串
string strNum=to_string(N);
//记录第一个大于str[i] 的位置;flag
int flag=strNum.size();
for(int i=strNum.size()-1;i>=0;i--){
if(strNum[i-1]>strNum[i]){
flag=i;
strNum[i-1]--;
}
}
for(int i=flag;i<strNum.size();i++){
strNum[i]='9';
}
//stoi将字符串转换为整型变量;
return stoi(strNum);
}
};
20 有效的括号
解题思路:
利用辅助栈,当碰到左括号时入栈,右括号时比较与栈顶元素,相匹配则出栈,不匹配return false;
class Solution {
public:
bool isValid(string s) {
if(s.size()==0) return true;
stack<char>sta;
for(int i=0 ; i<s.length() ; i++){
if(s[i]=='('||s[i]=='{'||s[i]=='['){
sta.push(s[i]);
}else{
if(s[i]==')'){
if(!sta.empty()&&sta.top()=='('){
sta.pop();
}else{
return false;
}
}else if(s[i]==']'){
if(!sta.empty()&&sta.top()=='['){
sta.pop();
}else{
return false;
}
}else if(s[i]=='}'){
if(!sta.empty()&&sta.top()=='{'){
sta.pop();
}else{
return false;
}
}
}
}
if(sta.empty()){
return true;
}
return false;
}
};
精简版本:
在匹配左括号的时候,右括号先入栈,就只需要比较当前元素和栈顶相不相等就可以了,比左括号先入栈代码实现要简单的多了!
class Solution {
public:
bool isValid(string s) {
stack<int> st;
for (int i = 0; i < s.size(); i++) {
if (s[i] == '(') st.push(')');
else if (s[i] == '{') st.push('}');
else if (s[i] == '[') st.push(']');
// 第三种情况 是遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false
// 第二种情况 遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
else if (st.empty() || st.top() != s[i]) return false;
else st.pop(); // st.top() == s[i]
}
// 第一种情况 此时我们已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false,否则就return true
return st.empty();
}
};
19 删除链表的倒数第N个节点
leetcode19
解题思路
解法1:可以先遍历一遍求出链表的长度N,然后等价于求删除正数第N-n+1的节点,在来一遍遍历,删除节点即可;
解法2:设置双指针,快指针先走K步,然后和慢指针一起向后走,当快指针为空即走到链表末尾时,此时慢指针正好对应与待删除结点的位置上,而如果在链表的头部加上虚拟头节点,此时则对应待删除结点的前一个位置,将此节点指向next的next即可,即
slow->next=slow->next->next;
。
代码实现
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
//解法1:
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
int cnt=0;
if(head==nullptr) return nullptr;
ListNode *cur=head;
ListNode *dummpy=new ListNode(0);
dummpy->next=head;
while(cur){
cnt++;
cur=cur->next;
}
cnt-=n;
ListNode *tmp=dummpy;
while(cnt--){
tmp=tmp->next;
}
tmp->next=tmp->next->next;
return dummpy->next;
}
};
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
//解法二
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
if(head==nullptr||head->next==nullptr) return nullptr;
ListNode *fast=head;
//添加亚节点在链表头节点之前,防止越界的同时找到待删除节点的前一个位置。
ListNode *dummpy=new ListNode (0,head);
ListNode *slow=dummpy;
while(n--){
fast=fast->next;
}
while(fast!=nullptr){
slow=slow->next;
fast=fast->next;
}
slow->next=slow->next->next;
return dummpy->next;
}
};
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode *slow=head,*fast=head,*pre=head;
while(n--){
fast=fast->next;
}
while(fast){
pre=slow;
slow=slow->next;
fast=fast->next;
}
//重要,边界判断
if(slow==head) return head->next;
pre->next=slow->next;
return head;
}
};