win11 系统 GPU版本pytorch、CUDA、anaconda 、pycharm详细安装教程

win11 系统深度学习环境搭建----- GPU版本pytorch、CUDA、cuDnn、anaconda 、tensorflow_gpu、pycharm详细安装教程

参考比站视频:

PyTorch(GPU版)详细安装教程_哔哩哔哩_bilibili

Python+Anaconda+PyCharm的安装和基本使用【适合完全零基础】不只是教你如何安装,还告诉你为什么这么安装_哔哩哔哩_bilibili

Anaconda和Pycharm的安装和配置 - 做你的太阳乀 - 博客园 (cnblogs.com)

1.Cuda安装

查看自己显卡对应的cuda版本

我的版本如下:

image-20211115215134636

安装地址:CUDA Toolkit Archive | NVIDIA Developer

下载对应版本地址即可;

注意:这里安装的如下一定要是默认地址,否则会安装不成功

image-20211115223318896

这里如果当前版本大于等于新版本号,则把勾号去掉

image-20211115223303816

检测是否安装成功:

win+R---->cmd

输入命令nvcc -v

image-20211116095442878

显示这样即安装成功

2.Cudnn安装

安装地址:https://developer.nvidia.com/rdp/cudnn-download

注意这里首次要注册登录,正常注册即可:

选择对应的cudnn版本,没有看到11.3的,下载的是11.2的

image-20211115221623127

然后将下载的文件夹解压缩,并且重命名如下:

image-20211116095128490

将第二级的cudnn文件夹复制粘贴到cuda的安装地址,如下:

image-20211116095626396

接下来是cuda和cudnn的环境配置

计算机—》属性—》高级系统设置----》环境变量—》系统变量—》path

添加如下环境变量

image-20211116095327864

这样即安装完成。

3.pytorch安装

注意在这之前要安装python解释器:Download Python | Python.org

下载对应版本的python.这里安装的是py3.7.3,因为pythorch安装要用到pip3,否则找不到命令。

安装过程默认即可,网上也有不少教程。

接下来安装pytorch,进入官网PyTorch下载对应的版本,这里我选择如下:

image-20211115224858901

复制命令到 cmd中的控制台,下载即可。

4.检测是否安装成功

输入python,

然后输入如下命令

import torch
print(torch.cuda.is_available())

image-20211116100209793

输出为true即为安装成功

5.pycharm安装

这里推荐一个公众号《软件管家》,里面有详细的pycharm安装教程

安装成功之后

新建项目如下图,设置解释器为之前下载的python.

image-20211116100543038

然后设置—》项目----》python interpreter 里面选择解释器,会看到下载的对应的库,可以看到下载了torch和torchvision

image-20211116100646955

6.anaconda下载安装

其实如上就可以正常使用了,但是anaconda提供了很好的包管理工具,具体可参考比站视频

下载地址:Index of / (anaconda.com)

下载之前可以查看anaconda和对应python版本之间的关系

下载完成之后配置可以参考以上链接;

其实现在pycharm里面有两套环境,一个是之前的python,一个是anaconda里面的python环境

如果喜欢用anaconda的话可以在pytorch官网上重新下载conda版本的gpu版本的pytorch

image-20211116101459974

然后复制命令到anaconda自带的控制台里面下载即可。

image-20211116101549407

下载完成之后也可以设置pycharm为anaconda里面python解释器的版本,如下:

配置教程Anaconda和Pycharm的安装和配置 - 做你的太阳乀 - 博客园 (cnblogs.com)

image-20211116101712252

之后跑代码就看你使用哪个配置了,个人建议使用anaconda版本的,比较方便,之后安装包可以在它自带的控制台里面下载。

7.anaconda虚拟环境搭建

为了使得每个项目都有自己的环境,防止相互影响,采用如下代码创建虚拟环境

//创建环境:conda create -n project_name python=3.6 
//激活环境:conda activate project_name
//退出某个环境:conda deactivate project_name
//安装xxx库或者依赖 pip install xxxx
//查看所有的虚拟环境 conda info --envs

8.tensorflow GPU版本下载

网上有教程:https://zhuanlan.zhihu.com/p/37086409

conda create -n tensorflow pip python=3.6

activate tensorflow
pip install --ignore-installed --upgrade tensorflow_gpu ==x.x.x

image-20211116130618438

这里是版本号不对应,tensorflow与cuda和cudnn版本号一定要对应上
测是是否安装成功:

#tensorflow2.0以上版本
import tensorflow as tf
print(tf.__version__)
print(tf.config.list_physical_devices('GPU'))
#tensorflow1.0b版本
print(tf.test.is_gpu_available())
### 回答1: 要在Win11安装PyTorch GPU版本,您需要执行以下步骤: 1. 安装CUDA工具包:访问NVIDIA的官方网站并下载适用于您的GPUCUDA工具包。安装过程中,请确保选择正确的版本路径。 2. 安装cuDNN:访问NVIDIA的官方网站并下载适用于您的CUDA版本的cuDNN。将cuDNN文件解压缩到CUDA安装目录的相应文件夹中。 3. 安装Anaconda:访问Anaconda的官方网站并下载适用于您的操作系统Anaconda安装程序。安装过程中,请确保选择正确的版本路径。 4. 创建虚拟环境:打开Anaconda Prompt并输入以下命令以创建一个新的虚拟环境: conda create --name myenv python=3.8 5. 激活虚拟环境:输入以下命令以激活新创建的虚拟环境: conda activate myenv 6. 安装PyTorch GPU版本:输入以下命令以安装PyTorch GPU版本: conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch 7. 验证安装:输入以下命令以验证PyTorch是否已成功安装: python -c "import torch; print(torch.cuda.is_available())" 如果输出为True,则表示PyTorch GPU版本已成功安装。 希望这些步骤对您有所帮助! ### 回答2: 首先,PyTorchGPU上的使用是非常方便的,提供了GPU版本安装包,可以提高计算速度。而Windows 11系统相对于Windows 10系统来说,在安装软件方面并没有太大差异,但是在系统的安全性能上有所提升,更为稳定。因此,安装PyTorch GPU版本Windows 11系统上可以更好地发挥GPU的性能,提高计算效率。 以下是在Windows 11系统安装PyTorch GPU版本的步骤: 1. 安装CUDA:首先需要在GPU安装CUDA,可以在NVIDIA官网下载最新版本CUDA,根据要使用的GPU型号选择对应的驱动程序CUDA版本安装好后需要重启电脑。 2. 安装cuDNN:cuDNN是一个用于深度学习的GPU加速库,由Nvidia公司开发,可以大幅提高深度学习算法GPU上的执行速度。在安装CUDA后,需要在Nvidia开发者网站下载cuDNN库文件,根据CUDA版本选择相应的cuDNN版本并解压缩到CUDA路径下。 3. 安装Anaconda:在官网上下载并安装Anaconda,可以使用conda指令来管理安装Python项目的依赖库。 4. 创建虚拟环境:在Anaconda中创建一个虚拟环境,可以方便地管理控制项目的依赖库。 5. 安装PyTorch GPU版本:使用conda指令安装PyTorch GPU版本,可以根据需要选择对应的版本依赖库版本。 6. 测试:安装完成后,在Python环境中导入PyTorch库并创建一个GPU张量,测试PyTorchGPU上的运行情况。 以上就是在Windows 11系统安装PyTorch GPU版本的步骤,不仅可以提高深度学习算法的速度,还可以充分发挥GPU的性能,提升计算速度。 ### 回答3: 在安装PyTorch GPU版本之前,必须先确保您的计算机满足PyTorch的基本要求:具有32位或64位操作系统,至少有8GB的RAM一块可以支持CUDA的NVIDIA显卡。 接下来,您需要安装CUDA toolkit,它是一种用于开发部署GPU加速应用程序的平台。根据您的显卡型号操作系统,您可以从NVIDIA官网上下载并安装适当版本CUDA toolkit。 完成CUDA toolkit的安装后,您还需要安装cuDNN(CUDA Deep Neural Network library),它是一种用于深度学习模型的GPU加速库。您需要在cuDNN官网上注册并下载适合您CUDA版本操作系统的cuDNN库。 安装CUDA toolkitcuDNN后,您可以开始安装PyTorch GPU版本。您可以在PyTorch官网上下载适当版本的whl文件并通过pip install命令安装: pip install torch-1.9.0+cu111-cp39-cp39-win_amd64.whl 注意,在安装PyTorch之前,您需要安装numpytyping_extensions依赖项。 安装PyTorch完成后,您可以验证您的GPU是否被正确识别并可以被PyTorch使用,可以运行以下代码: import torch print(torch.cuda.is_available()) #True print(torch.cuda.get_device_name(torch.cuda.current_device())) #显卡型号 如果输出结果是True,并且显示了您的显卡型号,则说明您已成功安装并配置了PyTorch GPU版本
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值