二进制,十进制以及它们之间的转换
- 十进制:我们日常生活中最常用的计数系统是\它的基数是10,使用0 - 9这十个数字来表示数。每个数位的权重是10的幂次方,从右往左依次是10⁰、10¹、10²等。
例如,数字234可以表示为2×10² + 3×10¹+ 4×10⁰。
- 二进制:是计算机科学中广泛使用的计数系统。它的基数是2,只用0和1两个数字来表示数。每个数位的权重是2的幂次方,从右往左依次是2⁰、2¹、2²等。例如,二进制数101可以表示为1×2² + 0×2¹ + 1×2⁰ = 5(十进制)。
- 十进制转二进制
- 除2取余法:用十进制数除以2,取余数作为二进制数的最低位。然后将商继续除以2,再取余数作为二进制数的下一位,直到商为0。
例如,将十进制数13转换为二进制:
- 13÷2 = 6......1(余数为1,是二进制数的最低位)
- 6÷2 = 3......0
- 3÷2 = 1......1
- 1÷2 = 0......1(余数为1,是二进制数的最高位)
- 所以,13(十进制)= 1101(二进制)。
- 二进制转十进制
- 位权展开法:将二进制数的每一位数字乘以对应的位权(2的幂次方),然后将结果相加。
例如,将二进制数1010转换为十进制:
- 1×2³+ 0×2² + 1×2¹ + 0×2⁰ = 8 + 0 + 2 + 0 = 10(十进制)。
运算符
算术运算:
+
-
*
/
位运算符:
& 按位与
| 按位或
^ 按位异或
~ 按位取反
<< 按位左移
>> 有符号的按位右移
>>> 无符号的按位右移
二进制运算主要包括算术运算和逻辑运算
算术运算
- 加法:规则是“逢二进一”。例如,1+1在二进制中等于10。就像十进制满十进一一样,二进制相加时,当同位数字相加结果大于等于2,就向高位进1。
0+0=0
0+1=1
1+0=1
1+1=0 (进位为1)
1+1+1=1 (进位为1)
复杂一点的 1110和1011
- 减法:规则是“借一当二”。
比如,10 - 1等于1。当本位不够减时,需要向高位借位,借1当作2来用。
0-0=0
1-1=0
1-0=1
0-1=1 (借位为1)
复杂一点的
- 乘法:
- 规则:0×0 = 0,0×1 = 0,1×0 = 0,1×1 = 1。
- 例如计算101×11:
- 用101分别乘以11的每一位,101×1 = 101,101×1(此位是十位) = 1010;
- 然后将所得结果相加(和十进制乘法的竖式运算类似),1010+101 = 1111。
再例如:1001和1010:
- 除法:
- 规则和十进制除法类似,只是借位、运算等都按二进制规则。
- 例如计算110÷10:
- 110相当于十进制的6,10相当于2,结果是3,写成二进制为11。
- 运算过程中,看被除数最高位够不够除数除,够就商1,不够商0,然后逐位运算。
zai例如:100110÷110:
所以,100110÷110=110余10。
说明:乘除法分原码乘法和补码乘法。
逻辑运算
- 逻辑“与”运算(&):
-只有当两个相应的二进制位都为1时,结果位才为1。例如1010 & 1100,结果是1000
-两个相“与”的逻辑变量中,只要有一个为0,“与”运算的结果就为0
0&1=0
1&0=0
1&1=1
- 逻辑“或”运算(|):
-两个相“或”的逻辑变量中,只要有一个为1,“或”运算的结果就为1
-仅当两个变量都为0时,或运算的结果才为0
计算时,要特别注意和算术运算的加法加以区别
0|0=0
0|1=1
1|0=1
1|1=1
- 逻辑“非”运算 (~)
-逻辑变量为0时,“非”运算的结果为1
-逻辑变量为1时,“非”运算的结果为0
(将二进制位中的0变为1,1变为0)
如~1010,结果是0101。
- 异或运算(^)
两个相“异或”的逻辑运算变量取值相同时,“异或”的结果为0
取值相异时,“异或”的结果为1
即当两个相应的二进制位不同时,结果位为1,相同时为0。
例如1010 ^ 1100,结果是0110。