Spark-SQL连接Hive
Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL 编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)、Hive 查询语言(HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译 Spark SQL 时引入 Hive支持,这样就可以使用这些特性了。
使用方式分为内嵌Hive、外部Hive、Spark-SQL CLI、Spark beeline 以及代码操作。
1)内嵌的 HIVE
如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可。但是在实际生产活动当中,几乎没有人去使用内嵌Hive这一模式。
代码操作Hive
1.导入依赖。
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.3.3</version>
</dependency>
可能出现下载jar包的问题:
D:\maven\repository\org\pentaho\pentaho-aggdesigner-algorithm\5.1.5-jhyde
2.将hive-site.xml 文件拷贝到项目的 resources 目录中。
3.代码实现。
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("hive")
val spark:SparkSession = SparkSession.builder()
.enableHiveSupport()
.config(sparkConf)
.getOrCreate()
spark.sql("show databases").show()
spark.sql("create database spark_sql")
spark.sql("show databases").show()