spark streaming核心编程

1) 需求:通过 SparkStreaming 从 Kafka 读取数据,并将读取过来的数据做简单计算,最终打印到控制台。

2) 导入依赖

<dependency>
   <groupId>org.apache.spark</groupId>
   <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
   <version>3.0.0</version>
</dependency>

 

3) 编写代码

4) /**
* 通过DirectAPI 0-10 消费kafka数据
* 消费的offset保存在_consumer_offsets主题中
*/
object DirectAPI {
 def main(args: Array[String]): Unit = {
   val sparkConf = new SparkConf().setMaster("local[*]").setAppName("direct")


   val ssc = new StreamingContext(sparkConf,Seconds(3))

   //定义kafka相关参数
   val kafkaPara :Map[String,Object] = Map[String,Object](ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG ->"node01:9092,node02:9092,node03:9092",
     ConsumerConfig.GROUP_ID_CONFIG->"kafka",
     "key.deserializer"->"org.apache.kafka.common.serialization.StringDeserializer",
     "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
   )

   //通过读取kafka数据,创建DStream
   val kafkaDStream:InputDStream[ConsumerRecord[String,String]] = KafkaUtils.createDirectStream[String,String](
     ssc,LocationStrategies.PreferConsistent,
     ConsumerStrategies.Subscribe[String,String](Set("kafka"),kafkaPara)
   )

   //提取出数据中的value部分
   val valueDStream :DStream[String] = kafkaDStream.map(record=>record.value())

   //wordCount计算逻辑
   valueDStream.flatMap(_.split(" "))
     .map((_,1))
     .reduceByKey(_+_)
     .print()

   ssc.start()
   ssc.awaitTermination()

 

5) 开启Kafka集群

 

6) 开启Kafka生产者,产生数据

kafka-console-producer.sh --broker-list node01:9092,node02:9092,node03:9092 --topic kafka

 

7) 运行程序,接收Kafka生产的数据并进行相应处理

 

8)查看消费进度

kafka-consumer-groups.sh --describe --bootstrap-server node01:9092,node02:9092,node03:9092 --group kafka

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值