3D数学基础:矩阵的逆

矩阵的逆

矩阵的求逆是一个重要的矩阵运算,这个运算只能用于方阵。

方阵M的逆,记作 M − 1 M^{-1} M1,也是一个矩阵,当M与 M − 1 M^{-1} M1相乘时,结果时单位矩阵。用公式表示:
M ( M − 1 ) = M − 1 M = 1 M(M^{-1})=M^{-1}M=1 M(M1)=M1M=1
并非所有矩阵都有逆。一个明显的例子是若矩阵的某一行或列上的元素都为零,用任何矩阵乘以该矩阵,结果都是一个零矩阵。
如果一个矩阵有逆矩阵,那么称它为可逆的或非奇异的。如果一个矩阵没有逆矩阵,则称它为不可逆的或奇异矩阵。
奇异矩阵的行列式为零,非奇异矩阵的行列式不为零,所以检测行列式的值式判断矩阵是否可逆的有效方法。
此外,对于任意可逆矩阵M,当且仅当 v = 0 v=0 v=0时, v M = 0 vM=0 vM=0

标准伴随矩阵

M的“标准伴随矩阵”记作“adj M”,定义为M的代数余子式矩阵的转置矩阵。
例子:
M = [ − 4 − 3 3 0 2 − 2 1 4 − 1 ] M=\begin{bmatrix}-4&-3&3\\0&2&-2\\1&4&-1\end{bmatrix} M=401324321
计算M的代数余子式矩阵:
c 11 = + ∣ 2 − 2 4 − 1 ∣ = 6 c 12 = − ∣ 0 − 2 1 − 1 ∣ = − 2 c 13 = + ∣ 0 2 1 4 ∣ = − 2 c 21 = − ∣ − 3 3 4 − 1 ∣ = 9 c 22 = + ∣ − 4 3 1 − 1 ∣ = 1 c 23 = − ∣ − 4 − 3 1 4 ∣ = 13 c 31 = + ∣ − 3 3 2 − 2 ∣ = 0 c 32 = − ∣ − 4 3 0 − 2 ∣ = − 8 c 33 = + ∣ − 4 − 3 0 2 ∣ = − 8 \begin{gathered} c_{11} = +\begin{vmatrix}2&-2\\4&-1\end{vmatrix}=6&c_{12} = -\begin{vmatrix}0&-2\\1&-1\end{vmatrix}=-2&c_{13} = +\begin{vmatrix}0&2\\1&4\end{vmatrix}=-2\\c_{21} = -\begin{vmatrix}-3&3\\4&-1\end{vmatrix}=9&c_{22} = +\begin{vmatrix}-4&3\\1&-1\end{vmatrix}=1&c_{23} = -\begin{vmatrix}-4&-3\\1&4\end{vmatrix}=13\\c_{31} = +\begin{vmatrix}-3&3\\2&-2\end{vmatrix}=0&c_{32} = -\begin{vmatrix}-4&3\\0&-2\end{vmatrix}=-8&c_{33} = +\begin{vmatrix}-4&-3\\0&2\end{vmatrix}=-8 \end{gathered} c11=+2421=6c21=3431=9c31=+3232=0c12=0121=2c22=+4131=1c32=4032=8c13=+0124=2c23=4134=13c33=+4032=8

M的标准伴随矩阵是代数余子式矩阵的转置:
a d j M = [ c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ] T = [ 6 − 2 − 2 9 1 13 0 − 8 − 8 ] T = [ 6 9 0 − 2 1 − 8 − 2 13 − 8 ] adjM=\begin{bmatrix}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{bmatrix}^T=\begin{bmatrix}6&-2&-2\\9&1&13\\0&-8&-8\end{bmatrix}^T=\begin{bmatrix}6&9&0\\-2&1&-8\\-2&13&-8\end{bmatrix} adjM=c11c21c31c12c22c32c13c23c33T=6902182138T=6229113088

一旦有了标准伴随矩阵,通过除以M的行列式,就能计算矩阵的逆。这也是为什么矩阵的行列式为零的话,矩阵不可逆:
M − 1 = a d j M ∣ M ∣ M^{-1}=\dfrac {adjM} {|M|} M1=MadjM

根据上式,能求出:
M − 1 = [ 6 9 0 − 2 1 − 8 − 2 13 − 8 ] − 24 = [ − 1 / 4 − 3 / 8 0 1 / 12 − 1 / 24 1 / 3 1 / 12 − 13 / 24 1 / 3 ] M^{-1}= {\begin{bmatrix}6&9&0\\-2&1&-8\\-2&13&-8\end{bmatrix} \over -24} = \begin{bmatrix}-1/4&-3/8&0\\1/12&-1/24&1/3\\1/12&-13/24&1/3\end{bmatrix} M1=24[6229113088]=1/41/121/123/81/2413/2401/31/3

当然还有其它方法可以用来计算矩阵的逆,比如高斯消元法

矩阵的逆的重要性质:

  • 如果M是非奇异局长你,则该矩阵的逆的逆等于原矩阵: ( M − 1 ) − 1 = M (M^{-1})^{-1}=M (M1)1=M
  • 单位矩阵的逆是它本身: I − 1 = I I^{-1}=I I1=I
  • 矩阵的转置的逆等于它的逆的转置: ( M T ) − 1 = ( M − 1 ) T (M^T)^{-1}=(M^{-1})^T (MT)1=(M1)T
  • 矩阵乘积的逆等于矩阵的逆的相反顺序的乘积: ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1。这可扩展到多个矩阵的情况。

几何解释

矩阵的逆在几何上非常有用,因为它使得我们可以计算变换的“反向”或“相反”变换——能“撤消”原变换的变换。
所以,如果向量v用矩阵M来进行变换,接着用M的逆 M − 1 M^{-1} M1进行变换,将会得到原向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值