矩阵的逆
矩阵的求逆是一个重要的矩阵运算,这个运算只能用于方阵。
方阵M的逆,记作
M
−
1
M^{-1}
M−1,也是一个矩阵,当M与
M
−
1
M^{-1}
M−1相乘时,结果时单位矩阵。用公式表示:
M
(
M
−
1
)
=
M
−
1
M
=
1
M(M^{-1})=M^{-1}M=1
M(M−1)=M−1M=1
并非所有矩阵都有逆。一个明显的例子是若矩阵的某一行或列上的元素都为零,用任何矩阵乘以该矩阵,结果都是一个零矩阵。
如果一个矩阵有逆矩阵,那么称它为可逆的或非奇异的。如果一个矩阵没有逆矩阵,则称它为不可逆的或奇异矩阵。
奇异矩阵的行列式为零,非奇异矩阵的行列式不为零,所以检测行列式的值式判断矩阵是否可逆的有效方法。
此外,对于任意可逆矩阵M,当且仅当
v
=
0
v=0
v=0时,
v
M
=
0
vM=0
vM=0。
标准伴随矩阵
M的“标准伴随矩阵”记作“adj M”,定义为M的代数余子式矩阵的转置矩阵。
例子:
M
=
[
−
4
−
3
3
0
2
−
2
1
4
−
1
]
M=\begin{bmatrix}-4&-3&3\\0&2&-2\\1&4&-1\end{bmatrix}
M=⎣⎡−401−3243−2−1⎦⎤
计算M的代数余子式矩阵:
c
11
=
+
∣
2
−
2
4
−
1
∣
=
6
c
12
=
−
∣
0
−
2
1
−
1
∣
=
−
2
c
13
=
+
∣
0
2
1
4
∣
=
−
2
c
21
=
−
∣
−
3
3
4
−
1
∣
=
9
c
22
=
+
∣
−
4
3
1
−
1
∣
=
1
c
23
=
−
∣
−
4
−
3
1
4
∣
=
13
c
31
=
+
∣
−
3
3
2
−
2
∣
=
0
c
32
=
−
∣
−
4
3
0
−
2
∣
=
−
8
c
33
=
+
∣
−
4
−
3
0
2
∣
=
−
8
\begin{gathered} c_{11} = +\begin{vmatrix}2&-2\\4&-1\end{vmatrix}=6&c_{12} = -\begin{vmatrix}0&-2\\1&-1\end{vmatrix}=-2&c_{13} = +\begin{vmatrix}0&2\\1&4\end{vmatrix}=-2\\c_{21} = -\begin{vmatrix}-3&3\\4&-1\end{vmatrix}=9&c_{22} = +\begin{vmatrix}-4&3\\1&-1\end{vmatrix}=1&c_{23} = -\begin{vmatrix}-4&-3\\1&4\end{vmatrix}=13\\c_{31} = +\begin{vmatrix}-3&3\\2&-2\end{vmatrix}=0&c_{32} = -\begin{vmatrix}-4&3\\0&-2\end{vmatrix}=-8&c_{33} = +\begin{vmatrix}-4&-3\\0&2\end{vmatrix}=-8 \end{gathered}
c11=+∣∣∣∣24−2−1∣∣∣∣=6c21=−∣∣∣∣−343−1∣∣∣∣=9c31=+∣∣∣∣−323−2∣∣∣∣=0c12=−∣∣∣∣01−2−1∣∣∣∣=−2c22=+∣∣∣∣−413−1∣∣∣∣=1c32=−∣∣∣∣−403−2∣∣∣∣=−8c13=+∣∣∣∣0124∣∣∣∣=−2c23=−∣∣∣∣−41−34∣∣∣∣=13c33=+∣∣∣∣−40−32∣∣∣∣=−8
M的标准伴随矩阵是代数余子式矩阵的转置:
a
d
j
M
=
[
c
11
c
12
c
13
c
21
c
22
c
23
c
31
c
32
c
33
]
T
=
[
6
−
2
−
2
9
1
13
0
−
8
−
8
]
T
=
[
6
9
0
−
2
1
−
8
−
2
13
−
8
]
adjM=\begin{bmatrix}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{bmatrix}^T=\begin{bmatrix}6&-2&-2\\9&1&13\\0&-8&-8\end{bmatrix}^T=\begin{bmatrix}6&9&0\\-2&1&-8\\-2&13&-8\end{bmatrix}
adjM=⎣⎡c11c21c31c12c22c32c13c23c33⎦⎤T=⎣⎡690−21−8−213−8⎦⎤T=⎣⎡6−2−291130−8−8⎦⎤
一旦有了标准伴随矩阵,通过除以M的行列式,就能计算矩阵的逆。这也是为什么矩阵的行列式为零的话,矩阵不可逆:
M
−
1
=
a
d
j
M
∣
M
∣
M^{-1}=\dfrac {adjM} {|M|}
M−1=∣M∣adjM
根据上式,能求出:
M
−
1
=
[
6
9
0
−
2
1
−
8
−
2
13
−
8
]
−
24
=
[
−
1
/
4
−
3
/
8
0
1
/
12
−
1
/
24
1
/
3
1
/
12
−
13
/
24
1
/
3
]
M^{-1}= {\begin{bmatrix}6&9&0\\-2&1&-8\\-2&13&-8\end{bmatrix} \over -24} = \begin{bmatrix}-1/4&-3/8&0\\1/12&-1/24&1/3\\1/12&-13/24&1/3\end{bmatrix}
M−1=−24[6−2−291130−8−8]=⎣⎡−1/41/121/12−3/8−1/24−13/2401/31/3⎦⎤
当然还有其它方法可以用来计算矩阵的逆,比如高斯消元法。
矩阵的逆的重要性质:
- 如果M是非奇异局长你,则该矩阵的逆的逆等于原矩阵: ( M − 1 ) − 1 = M (M^{-1})^{-1}=M (M−1)−1=M。
- 单位矩阵的逆是它本身: I − 1 = I I^{-1}=I I−1=I。
- 矩阵的转置的逆等于它的逆的转置: ( M T ) − 1 = ( M − 1 ) T (M^T)^{-1}=(M^{-1})^T (MT)−1=(M−1)T。
- 矩阵乘积的逆等于矩阵的逆的相反顺序的乘积: ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)−1=B−1A−1。这可扩展到多个矩阵的情况。
几何解释
矩阵的逆在几何上非常有用,因为它使得我们可以计算变换的“反向”或“相反”变换——能“撤消”原变换的变换。
所以,如果向量v用矩阵M来进行变换,接着用M的逆
M
−
1
M^{-1}
M−1进行变换,将会得到原向量。