矩阵的行列式
在任意方阵中都存在一个标量,称作该方阵的行列式。
方阵M的行列式记作|M|或“det M”。非方阵矩阵的行列式是未定义的。
2X2阶矩阵行列式的定义:
∣
M
∣
=
∣
m
11
m
12
m
21
m
22
∣
=
m
11
m
22
−
m
12
m
21
\begin{vmatrix}M\end{vmatrix}=\begin{vmatrix}m_{11}&m_{12}\\m_{21}&m_{22}\end{vmatrix}=m_{11}m_{22}-m_{12}m_{21}
∣∣M∣∣=∣∣∣∣m11m21m12m22∣∣∣∣=m11m22−m12m21
将主对角线和反对角线的元素各自相乘,然后用主对角线元素的积减去反对角线元素的积。
3X3阶矩阵的行列式定义:
∣
m
11
m
12
m
13
m
21
m
22
m
23
m
31
m
32
m
33
∣
=
m
11
m
22
m
33
+
m
12
m
23
m
31
+
m
13
m
21
m
32
−
m
13
m
22
m
31
−
m
12
m
21
m
33
−
m
11
m
23
m
32
\begin{vmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{vmatrix}=\begin{gathered}m_{11}m_{22}m_{33}+m_{12}m_{23}m_{31}+m_{13}m_{21}m_{32}\\-m_{13}m_{22}m_{31}-m_{12}m_{21}m_{33}-m_{11}m_{23}m_{32}\end{gathered}
∣∣∣∣∣∣m11m21m31m12m22m32m13m23m33∣∣∣∣∣∣=m11m22m33+m12m23m31+m13m21m32−m13m22m31−m12m21m33−m11m23m32
余子式和代数余子式
假设矩阵M有r行,c列。记法 M { i j } M^{\{ij\}} M{ij}表示从矩阵M中除去第i行和第j列后剩下的矩阵。矩阵 M { i j } M^{\{ij\}} M{ij}称作M的余子式。
对方阵M,给定行、列元素的代数余子式等于相应余子式的有符号行列式:
c
i
j
=
(
−
1
)
i
j
∣
M
{
i
j
}
∣
c_{ij} = (-1)^{ij}\begin{vmatrix}M^{\{ij\}}\end{vmatrix}
cij=(−1)ij∣∣M{ij}∣∣
那么可以用上式推导出矩阵的行列式:
∣
M
∣
=
∑
j
=
1
n
m
i
j
c
i
j
=
∑
j
=
1
n
(
−
1
)
i
j
∣
M
{
i
j
}
∣
\begin{vmatrix}M\end{vmatrix} = \displaystyle\sum_{j=1}^{n}m_{ij}c_{ij} = \sum_{j=1}^n(-1)^{ij}\begin{vmatrix}M^{\{ij\}}\end{vmatrix}
∣∣M∣∣=j=1∑nmijcij=j=1∑n(−1)ij∣∣M{ij}∣∣
高阶行列式的计算复杂性是呈指数递增的。幸运的是,有一种叫做“主元选择”的计算方法,有兴趣的可以了解一下。
行列式的一些重要性质
- 矩阵积的行列式等于矩阵行列式的积: ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB| = |A||B| ∣AB∣=∣A∣∣B∣
- 上一个性质可以扩展到多个矩阵的情况
- 矩阵转置的行列式等于原矩阵的行列式: ∣ M T ∣ = ∣ M ∣ |M^T|=|M| ∣MT∣=∣M∣
- 如果矩阵的任意行或列全为0,那么它的行列式为0
- 交换矩阵的任意两行或两列,行列式变负
- 任意行或列的非零积加到另一行或列上不会改变行列式的值
几何解释
2D中,行列式等于以基向量为两边的平行四边形的有符号面积。
3D中,行列式等于以变换后的基向量为三边的平行六面体的有符号体积。