3D数学基础:矩阵的行列式

矩阵的行列式

在任意方阵中都存在一个标量,称作该方阵的行列式。
方阵M的行列式记作|M|或“det M”。非方阵矩阵的行列式是未定义的。
2X2阶矩阵行列式的定义:
∣ M ∣ = ∣ m 11 m 12 m 21 m 22 ∣ = m 11 m 22 − m 12 m 21 \begin{vmatrix}M\end{vmatrix}=\begin{vmatrix}m_{11}&m_{12}\\m_{21}&m_{22}\end{vmatrix}=m_{11}m_{22}-m_{12}m_{21} M=m11m21m12m22=m11m22m12m21
将主对角线和反对角线的元素各自相乘,然后用主对角线元素的积减去反对角线元素的积。

3X3阶矩阵的行列式定义:
∣ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ∣ = m 11 m 22 m 33 + m 12 m 23 m 31 + m 13 m 21 m 32 − m 13 m 22 m 31 − m 12 m 21 m 33 − m 11 m 23 m 32 \begin{vmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{vmatrix}=\begin{gathered}m_{11}m_{22}m_{33}+m_{12}m_{23}m_{31}+m_{13}m_{21}m_{32}\\-m_{13}m_{22}m_{31}-m_{12}m_{21}m_{33}-m_{11}m_{23}m_{32}\end{gathered} m11m21m31m12m22m32m13m23m33=m11m22m33+m12m23m31+m13m21m32m13m22m31m12m21m33m11m23m32

余子式和代数余子式

假设矩阵M有r行,c列。记法 M { i j } M^{\{ij\}} M{ij}表示从矩阵M中除去第i行和第j列后剩下的矩阵。矩阵 M { i j } M^{\{ij\}} M{ij}称作M的余子式

对方阵M,给定行、列元素的代数余子式等于相应余子式有符号行列式
c i j = ( − 1 ) i j ∣ M { i j } ∣ c_{ij} = (-1)^{ij}\begin{vmatrix}M^{\{ij\}}\end{vmatrix} cij=(1)ijM{ij}

那么可以用上式推导出矩阵的行列式:
∣ M ∣ = ∑ j = 1 n m i j c i j = ∑ j = 1 n ( − 1 ) i j ∣ M { i j } ∣ \begin{vmatrix}M\end{vmatrix} = \displaystyle\sum_{j=1}^{n}m_{ij}c_{ij} = \sum_{j=1}^n(-1)^{ij}\begin{vmatrix}M^{\{ij\}}\end{vmatrix} M=j=1nmijcij=j=1n(1)ijM{ij}

高阶行列式的计算复杂性是呈指数递增的。幸运的是,有一种叫做“主元选择”的计算方法,有兴趣的可以了解一下。

行列式的一些重要性质

  • 矩阵积的行列式等于矩阵行列式的积: ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB| = |A||B| AB=AB
  • 上一个性质可以扩展到多个矩阵的情况
  • 矩阵转置的行列式等于原矩阵的行列式: ∣ M T ∣ = ∣ M ∣ |M^T|=|M| MT=M
  • 如果矩阵的任意行或列全为0,那么它的行列式为0
  • 交换矩阵的任意两行或两列,行列式变负
  • 任意行或列的非零积加到另一行或列上不会改变行列式的值

几何解释

2D中,行列式等于以基向量为两边的平行四边形的有符号面积。
3D中,行列式等于以变换后的基向量为三边的平行六面体的有符号体积。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值