水下图像语义分割是计算机视觉领域的重要研究方向,在海洋资源勘探、水下机器人导航、水下环境监测等方面具有广泛应用。本文综述了近年来水下图像语义分割的研究进展,从数据集构建、分割方法、注意力机制、实时性要求、自动标注以及多源数据融合等方面进行了详细分析。通过对现有研究的梳理和总结,本文指出了当前水下图像语义分割面临的挑战和未来研究的方向。
一、引言
随着海洋资源的不断开发和利用,水下图像语义分割技术逐渐成为计算机视觉领域的研究热点。水下图像语义分割是指对水下图像进行像素级别的分类,以识别出图像中的不同物体和场景。该技术在水下机器人导航、海洋资源勘探、水下环境监测等领域具有广泛应用前景。然而,由于水下环境的复杂性和特殊性,水下图像语义分割面临着诸多挑战,如光照不均、颜色失真、噪声干扰等。因此,研究水下图像语义分割技术具有重要意义。
近年来,深度学习技术的快速发展为水下图像语义分割提供了新的解决思路。基于深度学习的方法能够自动学习图像特征,实现高精度的语义分割。然而,由于水下图像的特殊性,现有的深度学习模型在直接应用于水下图像时往往效果不佳。因此,针对水下图像的特点,研究适用于水下图像的语义分割方法成为当前的研究重点。
本文综述了近年来水下图像语义分割的研究进展,从数据集构建、分割方法、注意力机制、实时性要求、自动标注以及多源数据融合等方面进行了详细分析。通过对现有研究的梳理和总结,本文指出了当前水下图像语义分割面临的挑战和未来研究的方向。
二、数据集构建
数据集是水下图像语义分割研究的基础。一个高质量的数据集能够为算