水下图像语义分割数据集

水下图像语义分割是计算机视觉领域的重要研究方向,在海洋资源勘探、水下机器人导航、水下环境监测等方面具有广泛应用。本文综述了近年来水下图像语义分割的研究进展,从数据集构建、分割方法、注意力机制、实时性要求、自动标注以及多源数据融合等方面进行了详细分析。通过对现有研究的梳理和总结,本文指出了当前水下图像语义分割面临的挑战和未来研究的方向。

一、引言

随着海洋资源的不断开发和利用,水下图像语义分割技术逐渐成为计算机视觉领域的研究热点。水下图像语义分割是指对水下图像进行像素级别的分类,以识别出图像中的不同物体和场景。该技术在水下机器人导航、海洋资源勘探、水下环境监测等领域具有广泛应用前景。然而,由于水下环境的复杂性和特殊性,水下图像语义分割面临着诸多挑战,如光照不均、颜色失真、噪声干扰等。因此,研究水下图像语义分割技术具有重要意义。

近年来,深度学习技术的快速发展为水下图像语义分割提供了新的解决思路。基于深度学习的方法能够自动学习图像特征,实现高精度的语义分割。然而,由于水下图像的特殊性,现有的深度学习模型在直接应用于水下图像时往往效果不佳。因此,针对水下图像的特点,研究适用于水下图像的语义分割方法成为当前的研究重点。

本文综述了近年来水下图像语义分割的研究进展,从数据集构建、分割方法、注意力机制、实时性要求、自动标注以及多源数据融合等方面进行了详细分析。通过对现有研究的梳理和总结,本文指出了当前水下图像语义分割面临的挑战和未来研究的方向。

图片

二、数据集构建

数据集是水下图像语义分割研究的基础。一个高质量的数据集能够为算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bryan Ding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值