Python
DouglasLikeToCode
HIT Bachelor
展开
-
统计学习方法笔记 第三章 kNN算法总结(包含Python代码)
统计学习方法笔记 第三章 K近邻算法1. k近邻算法2. k近邻模型2.1 模型2.2 距离度量2.3 k值选择2.4 分类决策规则3. kd树3.1 构造kd树3.2 搜索kd树4. Python代码4.1 基本KNN4.2 kd Tree5. 参考资料1. k近邻算法算法1:k近邻算法根据给定的的距离度量,在训练集TTT中找出与xxx最邻近的kkk个点,涵盖这kkk个点的xxx的邻域...原创 2019-04-16 15:30:39 · 608 阅读 · 0 评论 -
统计学习方法笔记 第四章 朴素贝叶斯(包含Python代码)
统计学习方法笔记 第四章 朴素贝叶斯1. 朴素贝叶斯法的学习与分类1.1 基本方法1.2 后验概率最大化的含义2. 朴素贝叶斯法的参数估计2.1 极大似然估计2.2 学习与分类算法2.3 贝叶斯估计3. python实现4. 参考资料1. 朴素贝叶斯法的学习与分类贝叶斯法求后验概率最大的输出做为输出,是一种生成模型。1.1 基本方法朴素贝叶斯方法通过训练数据集学习联合概率分布P(X,Y)...原创 2019-04-16 15:32:20 · 275 阅读 · 0 评论 -
统计学习方法笔记 第六章 逻辑斯谛回归(包含Python代码)
文章目录1. 逻辑斯谛回归模型1.1 逻辑斯谛分布1.2 二项逻辑斯谛回归模型1.3 模型参数估计2. python实现2.1 逻辑斯谛回归2.2 病马预测3. 参考资料4. 总结1. 逻辑斯谛回归模型1.1 逻辑斯谛分布分布函数:F(x)=P(X≤x)=11+e1(x−μ)/γF(x)=P(X\leq x)=\frac{1}{1+e^{1(x-\mu)/\gamma}}F(x)=P(X≤...原创 2019-05-07 18:18:01 · 347 阅读 · 0 评论